175 research outputs found

    Home parenteral nutrition with an omega-3-fatty-acid-enriched MCT/LCT lipid emulsion in patients with chronic intestinal failure (the HOME study):study protocol for a randomized, controlled, multicenter, international clinical trial

    Get PDF
    BACKGROUND: Home parenteral nutrition (HPN) is a life-preserving therapy for patients with chronic intestinal failure (CIF) indicated for patients who cannot achieve their nutritional requirements by enteral intake. Intravenously administered lipid emulsions (ILEs) are an essential component of HPN, providing energy and essential fatty acids, but can become a risk factor for intestinal-failure-associated liver disease (IFALD). In HPN patients, major effort is taken in the prevention of IFALD. Novel ILEs containing a proportion of omega-3 polyunsaturated fatty acids (n-3 PUFA) could be of benefit, but the data on the use of n-3 PUFA in HPN patients are still limited. METHODS/DESIGN: The HOME study is a prospective, randomized, controlled, double-blind, multicenter, international clinical trial conducted in European hospitals that treat HPN patients. A total of 160 patients (80 per group) will be randomly assigned to receive the n-3 PUFA-enriched medium/long-chain triglyceride (MCT/LCT) ILE (Lipidem/Lipoplus® 200 mg/ml, B. Braun Melsungen AG) or the MCT/LCT ILE (Lipofundin® MCT/LCT/Medialipide® 20%, B. Braun Melsungen AG) for a projected period of 8 weeks. The primary endpoint is the combined change of liver function parameters (total bilirubin, aspartate transaminase and alanine transaminase) from baseline to final visit. Secondary objectives are the further evaluation of the safety and tolerability as well as the efficacy of the ILEs. DISCUSSION: Currently, there are only very few randomized controlled trials (RCTs) investigating the use of ILEs in HPN, and there are very few data at all on the use of n-3 PUFAs. The working hypothesis is that n-3 PUFA-enriched ILE is safe and well-tolerated especially with regard to liver function in patients requiring HPN. The expected outcome is to provide reliable data to support this thesis thanks to a considerable number of CIF patients, consequently to broaden the present evidence on the use of ILEs in HPN. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT03282955. Registered on 14 September 2017

    Completing the nuclear reaction puzzle of the nucleosynthesis of 92Mo

    Full text link
    One of the greatest questions for modern physics to address is how elements heavier than iron are created in extreme, astrophysical environments. A particularly challenging part of that question is the creation of the so-called p-nuclei, which are believed to be mainly produced in some types of supernovae. The lack of needed nuclear data presents an obstacle in nailing down the precise site and astrophysical conditions. In this work, we present for the first time measurements on the nuclear level density and average strength function of 92^{92}Mo. State-of-the-art p-process calculations systematically underestimate the observed solar abundance of this isotope. Our data provide stringent constraints on the 91^{91}Nb(p,γ)92(p,{\gamma})^{92}Mo reaction rate, which is the last unmeasured reaction in the nucleosynthesis puzzle of 92^{92}Mo. Based on our results, we conclude that the 92^{92}Mo abundance anomaly is not due to the nuclear physics input to astrophysical model calculations.Comment: Submitted to PR

    ESPEN guideline: Clinical nutrition in surgery.

    Get PDF
    Early oral feeding is the preferred mode of nutrition for surgical patients. Avoidance of any nutritional therapy bears the risk of underfeeding during the postoperative course after major surgery. Considering that malnutrition and underfeeding are risk factors for postoperative complications, early enteral feeding is especially relevant for any surgical patient at nutritional risk, especially for those undergoing upper gastrointestinal surgery. The focus of this guideline is to cover nutritional aspects of the Enhanced Recovery After Surgery (ERAS) concept and the special nutritional needs of patients undergoing major surgery, e.g. for cancer, and of those developing severe complications despite best perioperative care. From a metabolic and nutritional point of view, the key aspects of perioperative care include: • integration of nutrition into the overall management of the patient • avoidance of long periods of preoperative fasting • re-establishment of oral feeding as early as possible after surgery • start of nutritional therapy early, as soon as a nutritional risk becomes apparent • metabolic control e.g. of blood glucose • reduction of factors which exacerbate stress-related catabolism or impair gastrointestinal function • minimized time on paralytic agents for ventilator management in the postoperative period • early mobilisation to facilitate protein synthesis and muscle function The guideline presents 37 recommendations for clinical practice

    Test of the generalized Brink-Axel hypothesis in ⁶⁴ ⁶⁵Ni

    Get PDF
    Previously published particle-γ coincidence data on the 64Ni(p,p′γ) 64Ni and 64Ni(dpγ)65Ni reactions were further analyzed to study the statistical properties of γ decay in64, 65Ni. To do so, the γ-decay to the quasicontinuum region and discrete low-lying states was investigated at γ -ray energies of 2.0–9.6 and 1.6–6.1 MeV in 64 Ni and 65 Ni, respectively. In particular, the dependence of the γ-strength function with initial and final excitation energy was studied to test the validity of the generalized Brink-Axel hypothesis. Finally, the role of fluctuations in transition strengths was estimated as a function of γ-ray and excitation energy. The γ-strength function is consistent with the hypothesis of the independence of initial excitation energy, in accordance with the generalized Brink-Axel hypothesis. The results show that the γdecay to low-lying levels displays large fluctuations for low initial excitation energies.We are also grateful for the financial support received from the Research Council of Norway (NFR). S.S. and G.M.T. acknowledge funding under NFR project Grants No. 210007 and No. 262952/F20. A.C.L. acknowledges financial support from the ERC-STG2014 under Grant No. 637686

    Nuclear level densities and γ\gamma-ray strength functions of 111,112,113^{111,112,113}Sn isotopes studied with the Oslo method

    Full text link
    The 111,112,113^{111,112,113}Sn isotopes have been studied with (p,dγp,d \gamma), (p,pγp,p^{\prime} \gamma), and (d,pγd,p \gamma) reactions to extract the nuclear level densities (NLDs) and γ\gamma-ray strength functions (GSFs) of these nuclei below the neutron separation energy by means of the Oslo method. The experimental NLDs for all three nuclei demonstrate a trend compatible with the constant-temperature model below the neutron separation energy while also being in good agreement with the NLDs of neighboring Sn isotopes, obtained previously with the Oslo-type and neutron evaporation experiments. The extracted microcanonical entropies yield 1.5\approx 1.5 kBk_B entropy of a valence neutron in both 111^{111}Sn and 113^{113}Sn. Moreover, the deduced microcanonical temperatures indeed suggest a clear constant-temperature behavior above \approx 3 MeV in 111,113^{111,113}Sn and above \approx 4.5 MeV in 112^{112}Sn. We observe signatures for the first broken neutron pairs between 2 and 4 MeV in all three nuclei. The GSFs obtained with the Oslo method are found to be in good agreement below the neutron threshold with the strengths of 112,114^{112,114}Sn extracted in the (p,pp,p^{\prime}) Coulomb excitation experiments.Comment: 13 pages, 9 figure

    Lipids in the intensive care unit: Recommendations from the ESPEN Expert Group

    Get PDF
    A.M-T. has received grant funding from B. Braun. L.P. has received speaking honoraria and grants from Fresenius-Kabi, Amgen, CSL Behring, Gilead Sciences, GlaxoSmithKline, Janssen-Cilag, Novartis, Roche, Sorin Group, and Viiv Healthcare

    In-beam γ-ray spectroscopy of Te 136 at relativistic energies

    Get PDF
    The reduced transition probability B(E2;01+→21+) to the first excited 2+ state of the neutron-rich nucleus Te136, with two protons and two neutrons outside the doubly magic Sn132 core, was measured via Coulomb excitation at relativistic energies at the RIKEN Radioactive Isotope Beam Factory. A value of B(E2)=0.191(26) e2b2 was extracted from the measured inelastic scattering cross section on an Au target taking into account the contributions from both Coulomb and nuclear excitations. In addition, an upper limit for the transition strength to a 2+ state of mixed-symmetry character in the excitation energy range of 1.5-2.2 MeV was determined and compared to the predictions of various theoretical calculations. Because of the high statistics gathered in the present experiment the error of the deduced B(E2) value is dominated by the systematic uncertainties involved in the analysis of Coulomb excitation experiments at beam energies around 150 MeV/u. Therefore, the latter are for the first time assessed in detail in the present work
    corecore