288 research outputs found

    Functional conservation of Pax6 regulatory elements in humans and mice demonstrated with a novel transgenic reporter mouse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Pax6 transcription factor is expressed during development in the eyes and in specific CNS regions, where it is essential for normal cell proliferation and differentiation. Mice lacking one or both copies of the <it>Pax6 </it>gene model closely humans with loss-of-function mutations in the <it>PAX6 </it>locus. The sequence of the Pax6/PAX6 protein is identical in mice and humans and previous studies have shown <it>structural </it>conservation of the gene's regulatory regions.</p> <p>Results</p> <p>We generated a transgenic mouse expressing green fluorescent protein (GFP) and neomycin resistance under the control of the entire complement of human <it>PAX6 </it>regulatory elements using a modified yeast artificial chromosome (YAC). Expression of GFP was studied in embryos from 9.5 days on and was confined to cells known to express Pax6. GFP expression was sufficiently strong that expressing cells could be distinguished from non-expressing cells using flow cytometry.</p> <p>Conclusion</p> <p>This work demonstrates the <it>functional </it>conservation of the regulatory elements controlling <it>Pax6/PAX6 </it>expression in mice and humans. The transgene provides an excellent tool for studying the functions of different <it>Pax6/PAX6 </it>regulatory elements in controlling Pax6 expression in animals that are otherwise normal. It will allow the analysis and isolation of cells in which <it>Pax6 </it>is activated, irrespective of the status of the endogenous locus.</p

    DNaseI Hypersensitivity and Ultraconservation Reveal Novel, Interdependent Long-Range Enhancers at the Complex Pax6 Cis-Regulatory Region

    Get PDF
    The PAX6 gene plays a crucial role in development of the eye, brain, olfactory system and endocrine pancreas. Consistent with its pleiotropic role the gene exhibits a complex developmental expression pattern which is subject to strict spatial, temporal and quantitative regulation. Control of expression depends on a large array of cis-elements residing in an extended genomic domain around the coding region of the gene. The minimal essential region required for proper regulation of this complex locus has been defined through analysis of human aniridia-associated breakpoints and YAC transgenic rescue studies of the mouse smalleye mutant. We have carried out a systematic DNase I hypersensitive site (HS) analysis across 200 kb of this critical region of mouse chromosome 2E3 to identify putative regulatory elements. Mapping the identified HSs onto a percent identity plot (PIP) shows many HSs correspond to recognisable genomic features such as evolutionarily conserved sequences, CpG islands and retrotransposon derived repeats. We then focussed on a region previously shown to contain essential long range cis-regulatory information, the Pax6 downstream regulatory region (DRR), allowing comparison of mouse HS data with previous human HS data for this region. Reporter transgenic mice for two of the HS sites, HS5 and HS6, show that they function as tissue specific regulatory elements. In addition we have characterised enhancer activity of an ultra-conserved cis-regulatory region located near Pax6, termed E60. All three cis-elements exhibit multiple spatio-temporal activities in the embryo that overlap between themselves and other elements in the locus. Using a deletion set of YAC reporter transgenic mice we demonstrate functional interdependence of the elements. Finally, we use the HS6 enhancer as a marker for the migration of precerebellar neuro-epithelium cells to the hindbrain precerebellar nuclei along the posterior and anterior extramural streams allowing visualisation of migratory defects in both pathways in Pax6(Sey/Sey) mice

    Identification of Genomic Regions Regulating Pax6 Expression in Embryonic Forebrain Using YAC Reporter Transgenic Mouse Lines

    Get PDF
    The transcription factor Pax6 is a crucial regulator of eye and central nervous system development. Both the spatiotemporal patterns and the precise levels of Pax6 expression are subject to tight control, mediated by an extensive set of cis-regulatory elements. Previous studies have shown that a YAC reporter transgene containing 420 Kb of genomic DNA spanning the human PAX6 locus drives expression of a tau-tagged GFP reporter in mice in a pattern that closely resembles that of endogenous Pax6. Here we have closely compared the pattern of tau-GFP reporter expression at the cellular level in the forebrains and eyes of transgenic mice carrying either complete or truncated versions of the YAC reporter transgene with endogenous Pax6 expression and found several areas where expression of tau-GFP and Pax6 diverge. Some discrepancies are due to differences between the intracellular localization or perdurance of tau-GFP and Pax6 proteins, while others are likely to be a consequence of transcriptional differences. We show that cis-regulatory elements that lie outside the 420 kb fragment of PAX6 are required for correct expression around the pallial-subpallial boundary, in the amygdala and the prethalamus. Further, we found that the YAC reporter transgene effectively labels cells that contribute to the lateral cortical stream, including cells that arise from the pallium and subpallium, and therefore represents a useful tool for studying lateral cortical stream migration

    Photocatalysed (Meth)acrylate Polymerization by (Antimony-Doped) Tin Oxide Nanoparticles and Photoconduction of Their Crosslinked Polymer Nanoparticle Composites

    Get PDF
    In the absence of another (photo)radical initiator Sb:SnO 2 nanoparticles (0 ≤ Sb ≤ 13 at %) photocatalyze during irradiation with UV light the radical polymerization of (meth)acrylate monomers. When cured hard and transparent (&gt;98%) films with a low haze (&lt;1%) are required, when these particles are grafted in advance with 3-methacryloxypropyltrimethoxysilane (MPS) and doped with Sb. Public knowledge about the photocatalytic properties of Sb:SnO 2 nanoparticles is hardly available. Therefore, the influence of particle concentration, surface groups, and Sb doping on the rate of C=C (meth)acrylate bond polymerization was determined with aid of real-time FT-IR spectroscopy. By using a wavelength of irradiation with a narrow bandgab (315 ± 5 nm) the influence of these factors on the quantum yield (Φ) and on polymer and particle network structure formation was determined. It is shown that Sb doping and MPS grafting of the particles lowers Φ. MPS grafting of the particles also influences the structure of the polymer network formed. Without Sb doping of these particles unwanted, photocatalytic side reactions occur. It is also shown that cured MPS-Sb:SnO 2 /(meth)acrylate nanocomposites have photoconduction properties even when the particle concentration is as low as 1 vol.%. The results suggest that the Sb:SnO 2 (Sb &gt; 0 at %) nanoparticles can be attractive fillers for other photocatalytic applications photorefractive materials, optoelectronic devices and sensors

    Sequencing of Pax6 loci from the elephant shark reveals a family of Pax6 genes in vertebrate genomes, forged by ancient duplications and divergences

    Get PDF
    Pax6 is a developmental control gene essential for eye development throughout the animal kingdom. In addition, Pax6 plays key roles in other parts of the CNS, olfactory system, and pancreas. In mammals a single Pax6 gene encoding multiple isoforms delivers these pleiotropic functions. Here we provide evidence that the genomes of many other vertebrate species contain multiple Pax6 loci. We sequenced Pax6-containing BACs from the cartilaginous elephant shark (Callorhinchus milii) and found two distinct Pax6 loci. Pax6.1 is highly similar to mammalian Pax6, while Pax6.2 encodes a paired-less Pax6. Using synteny relationships, we identify homologs of this novel paired-less Pax6.2 gene in lizard and in frog, as well as in zebrafish and in other teleosts. In zebrafish two full-length Pax6 duplicates were known previously, originating from the fish-specific genome duplication (FSGD) and expressed in divergent patterns due to paralog-specific loss of cis-elements. We show that teleosts other than zebrafish also maintain duplicate full-length Pax6 loci, but differences in gene and regulatory domain structure suggest that these Pax6 paralogs originate from a more ancient duplication event and are hence renamed as Pax6.3. Sequence comparisons between mammalian and elephant shark Pax6.1 loci highlight the presence of short- and long-range conserved noncoding elements (CNEs). Functional analysis demonstrates the ancient role of long-range enhancers for Pax6 transcription. We show that the paired-less Pax6.2 ortholog in zebrafish is expressed specifically in the developing retina. Transgenic analysis of elephant shark and zebrafish Pax6.2 CNEs with homology to the mouse NRE/Pα internal promoter revealed highly specific retinal expression. Finally, morpholino depletion of zebrafish Pax6.2 resulted in a "small eye" phenotype, supporting a role in retinal development. In summary, our study reveals that the pleiotropic functions of Pax6 in vertebrates are served by a divergent family of Pax6 genes, forged by ancient duplication events and by independent, lineage-specific gene losses

    Controlled overexpression of Pax6 in vivo negatively autoregulates the Pax6 locus, causing cell-autonomous defects of late cortical progenitor proliferation with little effect on cortical arealization

    Get PDF
    Levels of expression of the transcription factor Pax6 vary throughout corticogenesis in a rostro-lateral(high) to caudo-medial(low) gradient across the cortical proliferative zone. Previous loss-of-function studies have indicated that Pax6 is required for normal cortical progenitor proliferation, neuronal differentiation, cortical lamination and cortical arealization, but whether and how its level of expression affects its function is unclear. We studied the developing cortex of PAX77 YAC transgenic mice carrying several copies of the human PAX6 locus with its full complement of regulatory regions. We found that PAX77 embryos express Pax6 in a normal spatial pattern, with levels up to three times higher than wild type. By crossing PAX77 mice with a new YAC transgenic line that reports Pax6 expression (DTy54), we showed that increased expression is limited by negative autoregulation. Increased expression reduces proliferation of late cortical progenitors specifically, and analysis of PAX77↔wild-type chimeras indicates that the defect is cell autonomous. We analyzed cortical arealization in PAX77 mice and found that, whereas the loss of Pax6 shifts caudal cortical areas rostrally, Pax6 overexpression at levels predicted to shift rostral areas caudally has very little effect. These findings indicate that Pax6 levels are stabilized by autoregulation, that the proliferation of cortical progenitors is sensitive to altered Pax6 levels and that cortical arealization is not

    Long-range downstream enhancers are essential for Pax6 expression

    Get PDF
    AbstractPax6 is a developmental control gene with an essential role in development of the eye, brain and pancreas. Pax6, as many other developmental regulators, depends on a substantial number of cis-regulatory elements in addition to its promoters for correct spatiotemporal and quantitative expression. Here we report on our analysis of a set of mice transgenic for a modified yeast artificial chromosome carrying the human PAX6 locus. In this 420 kb YAC a tauGFP-IRES-Neomycin reporter cassette has been inserted into the PAX6 translational start site in exon 4. The YAC has been further engineered to insert LoxP sites flanking a 35 kb long, distant downstream regulatory region (DRR) containing previously described DNaseI hypersensitive sites, to allow direct comparison between the presence or absence of this region in the same genomic context. Five independent transgenic lines were obtained that vary in the extent of downstream PAX6 locus that has integrated. Analysis of transgenic embryos carrying full-length and truncated versions of the YAC indicates the location and putative function of several novel tissue-specific enhancers. Absence of these distal regulatory elements abolishes expression in specific tissues despite the presence of more proximal enhancers with overlapping specificity, strongly suggesting interaction between these control elements. Using plasmid-based reporter transgenic analysis we provide detailed characterization of one of these enhancers in isolation. Furthermore, we show that overexpression of a short PAX6 isoform derived from an internal promoter in a multicopy YAC transgenic line results in a microphthalmia phenotype. Finally, direct comparison of a single-copy line with the floxed DRR before and after Cre-mediated deletion demonstrates unequivocally the essential role of these long-range control elements for PAX6 expression

    Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations

    Full text link
    The jet fragmentation function is measured with direct photon-hadron correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the photon is an excellent approximation to the initial p_T of the jet and the ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the direct photon-hadron yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_ AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates modification of the jet fragmentation function. Suppression, most likely due to energy loss in the medium, is seen at high z_T. The fragment yield at low z_T is enhanced at large angles. Such a trend is expected from redistribution of the lost energy into increased production of low-momentum particles.Comment: 562 authors, 70 insitutions, 8 pages, and 3 figures. Submitted to Phys. Rev. Lett. v2 has minor changes to improve clarity. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurements of elliptic and triangular flow in high-multiplicity 3^{3}He++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    We present the first measurement of elliptic (v2v_2) and triangular (v3v_3) flow in high-multiplicity 3^{3}He++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in 3^{3}He++Au and in pp++pp collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the 3^{3}He++Au system. The collective behavior is quantified in terms of elliptic v2v_2 and triangular v3v_3 anisotropy coefficients measured with respect to their corresponding event planes. The v2v_2 values are comparable to those previously measured in dd++Au collisions at the same nucleon-nucleon center-of-mass energy. Comparison with various theoretical predictions are made, including to models where the hot spots created by the impact of the three 3^{3}He nucleons on the Au nucleus expand hydrodynamically to generate the triangular flow. The agreement of these models with data may indicate the formation of low-viscosity quark-gluon plasma even in these small collision systems.Comment: 630 authors, 9 pages, 4 figures, 2 tables. v2 is the version accepted for publication by Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV

    Get PDF
    We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and 62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative to scaled p+p cross sections obtained from other measurements (R_AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement.Comment: 365 authors, 10 pages, 11 figures, 4 tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore