25 research outputs found

    Genetic Variation in the CYP2C Monooxygenase Enzyme Subfamily Shows No Association With Longevity in a German Population

    Get PDF
    Cytochrome P450 enzymes, especially the CYP2C subfamily, are involved in the generation of reactive oxygen species and are regarded as susceptibility factors for age-related diseases. Furthermore, the CYP2C-encoding genes are known to be highly polymorphic, with a number of variants leading to changes in enzyme activity. These observations prompted us to investigate whether allelic variation in the CYP2C-encoding genes was associated with human longevity. In a comprehensive haplotype tagging approach, we genotyped 56 single nucleotide polymorphisms located in the CYP2C gene family (CYP2C8, CYP2C9, CYP2C18, and CYP2C19) in our extensive collection of 1,384 long-lived individuals (centenarians and nonagenarians) and 945 younger controls. None of the tested single nucleotide polymorphisms showed a significant association with the longevity phenotype at the allele, genotype, or haplotype level. These results suggest that there is no notable influence of sequence variation in the CYP2C genes on longevity in the examined German populatio

    Reduced FOXO1 Expression Accelerates Skin Wound Healing and Attenuates Scarring

    Get PDF
    The forkhead box O (FOXO) family has been extensively investigated in aging and metabolism, but its role in tissue-repair processes remains largely unknown. Herein, we clarify the molecular aspect of the FOXO family in skin wound healing. We demonstrated that Foxo1 and Foxo3a were both up-regulated during murine skin wound healing. Partial knockout of Foxo1 in Foxo1 +/- mice throughout the body led to accelerated skin wound healing with enhanced keratinocyte migration, reduced granulation tissue formation, and decreased collagen density, accompanied by an attenuated inflammatory response, but we observed no wound phenotype in Foxo3a-/- mice. Fibroblast growth factor 2, adiponectin, and notch1 genes were significantly increased at wound sites in Foxo1+/- mice, along with markedly altered extracellular signal-regulated kinase 1/2 and AKT phosphorylation. Similarly, transient knockdown of Foxo1 at the wound site by local delivery of antisense oligodeoxynucleotides enhanced skin wound healing. The link between FOXO1 and scarring extends to patients, in particular keloid scars, where we see FOXO1 expression markedly increased in fibroblasts and inflammatory cells within the otherwise normal dermis. This occurs in the immediate vicinity of the keloid by comparison to the center of the mature keloid, indicating that FOXO1 is associated with the overgrowth of this fibrotic response into adjacent normal skin. Overall, our data indicate that molecular targeting of FOXO1 may improve the quality of healing and reduce pathological scarring

    The Biological Basis of Aging: Implications for Medical Genetics

    No full text

    Sequencing and genotypic analysis of the triosephosphate isomerase (<it>TPI1</it>) locus in a large sample of long-lived Germans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Triosephosphate isomerase (TPI) is a central and conserved glycolytic enzyme. In humans, TPI is encoded by a single gene on 12p13, and associated with a rare genetic disorder, TPI deficiency. Reduced TPI activity can increase specific oxidant resistances of model organisms and TPI null-alleles have been hypothesized to promote a heterozygote advantage in man. However, comprehensive genetic information about the <it>TPI1 </it>locus is still lacking.</p> <p>Results</p> <p>Here, we sequenced the <it>TPI1 </it>locus in a sample of 357 German long-lived individuals (LLI) aged 95 to 110 years. We identified 17 different polymorphisms, of which 15 were rare and previously unknown. The two remaining SNPs occurred at much higher frequency and were tested for association with the longevity phenotype in larger samples of LLI (n = 1422) and younger controls (n = 967). Neither of the two markers showed a statistically significant difference in allele or genotype frequency between LLI and control subjects.</p> <p>Conclusion</p> <p>This study marks the <it>TPI1 </it>locus as extraordinarily conserved, even when analyzing intronic and non-coding regions of the gene. None of the identified sequence variations affected the amino acid composition of the TPI protein and hence, are unlikely to impact the catalytic activity of the enzyme. Thus, TPI variants occur less frequent than expected and inactive alleles are not enriched in German centenarians.</p

    Association of FOXO3A variation with human longevity confirmed in German centenarians

    No full text
    The human forkhead box O3A gene (FOXO3A) encodes an evolutionarily conserved key regulator of the insulin–IGF1 signaling pathway that is known to influence metabolism and lifespan in model organisms. A recent study described 3 SNPs in the FOXO3A gene that were statistically significantly associated with longevity in a discovery sample of long-lived men of Japanese ancestry [Willcox et al. (2008) Proc Natl Acad Sci USA 105:13987–13992]. However, this finding required replication in an independent population. Here, we have investigated 16 known FOXO3A SNPs in an extensive collection of 1,762 German centenarians/nonagenarians and younger controls and provide evidence that polymorphisms in this gene were indeed associated with the ability to attain exceptional old age. The FOXO3A association was considerably stronger in centenarians than in nonagenarians, highlighting the importance of centenarians for genetic longevity research. Our study extended the initial finding observed in Japanese men to women and indicates that both genders were likely to be equally affected by variation in FOXO3A. Replication in a French centenarian sample generated a trend that supported the previous results. Our findings confirmed the initial discovery in the Japanese sample and indicate FOXO3A as a susceptibility gene for prolonged survival in humans

    No or only population-specific effect of PON1 on human longevity: A comprehensive meta-analysis

    No full text
    Paraoxonase 1 (PON1) has been suggested as a plausible candidate gene for human longevity due to its modulation of cardiovascular disease risk, by preventing oxidation of atherogenic low-density lipoprotein. The role of the PON1 192 QJR polymorphism has been analyzed for association with survival at old age in several populations, albeit with controversial results. To reconcile the conflicting evidence, we performed a large association study with two samples of 2357 Germans and 1025 French, respectively. We combined our results with those from seven previous studies in the largest and most comprehensive meta-analysis on PON1 192 Q/R and longevity to-date, to include a total of 9580 individuals. No significant association of PON1 192 Q/R with longevity was observed, for either R allele or carriership. This finding relied on very large sample sizes, is supported by different analysis methods and is therefore considered very robust. Moreover, we have investigated a potential interaction of PON1 192 Q/R with APOE epsilon 4 using data from four populations. Whereas a significant result was found in the German sample, this could not be confirmed in the other examined groups. Our large-scale meta-analysis provided no evidence that the PON1 192 Q/R polymorphism is associated with longevity, but this does not exclude the possibility of population-specific effects due to the influence of, and interaction between, different genetic and/or environmental factors (e.g. diet). (C) 2010 Elsevier Ireland Ltd. All rights reserved.Molecular Epidemiolog

    A genome-wide association study confirms <em>APOE</em> as the major gene influencing survival in long-lived individuals.

    No full text
    We conducted a case-control genome-wide association study (GWAS) of human longevity, comparing 664,472 autosomal SNPs in 763 long-lived individuals (LLI; mean age: 99.7 years) and 1085 controls (mean age: 60.2 years) from Germany. Only one association, namely that of SNP rs4420638 near the APOC1 gene, achieved genome-wide significance (allele-based P=1.8&times;10(-10)). However, logistic regression analysis revealed that this association, which was replicated in an independent German sample, is fully explicable by linkage disequilibrium with the APOE allele ɛ4, the only variant hitherto established as a major genetic determinant of survival into old age. Our GWAS failed to identify any additional autosomal susceptibility genes. One explanation for this lack of success in our study would be that GWAS provide only limited statistical power for a polygenic phenotype with loci of small effect such as human longevity. A recent GWAS in Dutch LLI independently confirmed the APOE-longevity association, thus strengthening the conclusion that this locus is a very, if not the most, important genetic factor influencing longevity
    corecore