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LONGEVITY in humans is considered a multifacto-
rial trait to which various genetic and environmental 

factors are likely to contribute. About 30% of the varia-
tion in adult life span is attributable to genetic parameters 
that show their strongest effect later in life (>60 years of 
age) (1–6). Epidemiological studies have revealed that 
people who survive to an exceptional old age (ie, ≥95 
years) have often avoided or survived age-associated dis-
eases. Hence, these long-lived individuals (LLI) show a 
favorable course of the ageing process and offer the 
unique opportunity to explore the genetic basis of the 
“healthy ageing” phenotype (7,8). It has been suggested 
that the genetic composition of the LLI differs from that 
of average-lived individuals in the following regards:  
(i) LLI are enriched for advantageous variants in so-called 
“longevity-enabling genes” and/or (ii) their genetic con-
stitution shows a depletion of risk alleles for age-related 
diseases (9,10).

Cytochrome P450 enzymes (CYPs) are monooxygenases 
that are commonly known as important drug-metabolizing 
enzymes (11). They are also regarded as susceptibility fac-
tors for age-related cardiovascular diseases that represent 

the leading cause of death worldwide (12–14). Furthermore, 
CYP enzymes, particularly the CYP2C isoenzyme subfam-
ily, are involved in the generation of reactive oxygen species 
(ROS) (15). Already more than 50 years ago, the accumula-
tion of ROS was suggested to cause changes in physical  
or cognitive functions with ageing (16). To date, findings  
in the area of longevity research support a role of ROS  
and oxidative damage in age-related cellular decline ((17) 
and reviewed in (18)) and the development of age-related  
diseases (19).

In humans, the CYP2 enzyme subfamily C consists of 
four genes (CYP2C8, CYP2C9, CYP2C18, and CYP2C19) 
that are located next to each other on chromosome 10q 
(Figure 1). These enzymes are mainly expressed in human 
liver (20) but are also expressed in various other tissues, 
including the cardiovascular system, where they are in-
volved in the modulation of vascular homeostasis by me-
tabolizing endogenous regulators of vascular tone (21). 
Consequently, CYP2C inhibition has been reported to reduce 
ischemia–reperfusion injury in myocardial tissue (22–
24). Furthermore, the CYP2C-encoding genes are also 
known to be highly polymorphic. Some of these variants 
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lead to a markedly reduced or no enzyme activity, 
whereas other alleles induce an increased activity or ex-
pression. In the context of drug metabolism, the variants 
CYP2C9*2 (rs1799853) and 2C9*3 (rs1057910) associ-
ated with reduced enzyme activity are both known  
to be of particular clinical relevance. Recently, the U.S. 
federal drug agency (Food and Drug Administration)  
has encouraged prospective CYP2C9 genotyping as a 
clinical tool to allow for individualized dose adjustment 
of the oral anticoagulant warfarin that is metabolized by 
CYP2C9 (25).

As CYP2C enzymes also play an important role in the 
generation of ROS and are regarded as susceptibility factors 
for age-related diseases (15), they appear to be attractive 
candidates to be studied in the context of human longevity. 
Here, we performed a comprehensive fine mapping of the 
four CYP2C genes by testing altogether 56 single nucleo-
tide polymorphisms (SNPs) in our extensive collection of 

1,384 LLI (centenarians and nonagenarians) and 945  
appropriately matched younger controls.

Methods

Participants
The LLI sample comprised 1,384 unrelated German 

study participants of exceptional age (age range: 95–109 
years, mean: 98.8 years), including 616 centenarians (mean 
age: 101.3 years). The gender ratio was 73% females versus 
27% males. The 945 German control participants were be-
tween 60 and 75 years of age (mean age: 66.9 years) and 
matched the LLI by ancestry, gender, and geographical ori-
gin within the country. A detailed description of the samples 
and the recruitment procedure is given elsewhere (26). All 
participants gave informed written consent prior to partici-
pation. The study was approved by the Ethics Committee of 
the University Hospital Schleswig-Holstein in Kiel.

Figure 1. CYP2C gene region on chromosome 10. The physical position (in kilobases) of all 56 genotyped single nucleotide polymorphisms refers to the Genome 
Reference Consortium Human genome build 37. A schematic representation of the gene structures for CYP2C18, CYP2C19, CYP2C9, and CYP2C8 is shown. 
The linkage disequilibrium (LD) plot of the locus is based on the measure r2 and was generated with Haploview 3.32 using the data of the whole German case–control 
sample.
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SNP Genotyping
DNA samples from LLI and control participants were an-

alyzed for 56 SNPs in the CYP2C gene region (Figure 1, 
Table 1) by using the SNPlex Genotyping System (Applied 
Biosystems, Foster City, CA) (27). The complete marker set 
consists of (i) a maximally informative panel of SNPs,  
selected through a haplotype tagging approach (based on 
the HapMap genotypes of Europeans with the pairwise tag-
ging option; pairwise r2 ≥ .8; pHWE > .001) to ensure that 
most of the allelic variation of the genomic regions was cap-
tured and the common haplotypes (≥2%) were represented; 
(ii) potentially functional SNPs that are located in exons, 
exon–intron boundaries, promoter regions, and 5′ and 3′ un-
translated regions; and (iii) polymorphisms that have  
already been proven to be functionally relevant in the con-
text of CYP2C enzyme activity (28–30). Of the 56 analyzed 
markers, 14 are located in the CYP2C8 gene, 20 SNPs in 
CYP2C9, 10 SNPs in CYP2C18, and 12 SNPS in CYP2C19 
(Figure 1, Table 1).

Statistical Analysis
Allele-based single marker case–control analyses (CCA) 

were performed with c2 statistics and the appropriate degrees 
of freedom using the open-source analysis toolset PLINK 
v.1.07 (http://pngu.mgh.harvard.edu/~purcell/plink/). p values 
smaller than .05 were considered nominally statistically 
significant, and Bonferroni correction for 56 tests was 
applied to the single-point results: Of the 56 tested markers, 
28 were in strong linkage disequilibrium with each other 
(pairwise r2 > .8; calculated with the Haploview tagger 
pairwise option) so that the number of markers considered 
for the Bonferroni correction could be reduced to 28. As 
two case–control analyses (whole sample and centenarians) 
were performed, altogether 56 tests need to be taken into 
account. The software programme Haploview version 4.1 
(http://www.broad.mit.edu/mpg/haploview/) was used to 
assess all polymorphisms for significant deviation from the 
Hardy–Weinberg equilibrium (HWE), to calculate linkage 
disequilibrium (r2) between each marker pair, and to conduct 
haplotype association analyses in blocks (31).

Results
The whole sample of 1,384 German LLI, a subset of 616 

centenarians, and a control group of 945 younger individuals 
were subjected to a gender-matched case–control analysis of 
56 SNPs located in the CYP2C genes (CYP2C8, CYP2C9, 
CYP2C18, and CYP2C19). All SNPs were found to be in 
HWE (p > .001). Only one nominally significant association 
signal (rs11188059; pCCA = .04) was observed in the analysis 
of the centenarian sample (Table 1) that did not pass correc-
tion for multiple testing (Bonferroni-adjusted pCCA = 1, as-
suming 56 tests; see “Participants and Methods” and 
“Statistical Analysis”). In the entire longevity sample (1,384 
LLI and 945 controls), none of the tested SNPs showed a 

significant association, even without consideration of multiple 
testing (data not shown).

The 56 SNPs form three haplotype blocks (Figure 1). 
Block 1 comprises 20 markers, Block 2 comprises 19 mark-
ers, and Block 3 comprises 11 markers (Figure 1), which 
define eight common haplotypes (each present at a frequency 
of at least 2% in the population) for each block. None of  
the observed haplotypes differed significantly in frequency 
between cases and controls (data not shown).

Discussion
Cytochrome P450 enzymes, especially the CYP2C iso-

forms, are involved in the generation of ROS (15). They are 
expressed in tissues of the cardiovascular system and are 
considered susceptibility factors for age-related diseases 
(15). Furthermore, the CYP2C-encoding genes are known 
to be highly polymorphic, with a number of variants leading 
to changes in enzyme activity.

These observations prompted us to investigate whether 
allelic variation in the CYP2C-encoding genes was associ-
ated with human longevity. Altogether, we genotyped 56 
markers in our extensive DNA collection of more than 
2,300 LLI and controls. None of the tested SNPs or haplo-
types showed a statistically significant association with lon-
gevity, neither in the whole sample nor in the centenarian 
subset.

Candidate gene association studies have emerged as 
powerful tools in longevity research (32–47). So far, two 
longevity relevant genes (APOE and FOXO3A) have been 
confirmed in many different populations (32,35–37,39,48–
55). Because APOE and FOXO3A have been identified by 
candidate gene association studies, it seems that this method 
is still relevant for human longevity research, even in the era 
of genome-wide association studies. Although genome-
wide association studies offer the advantage of detecting 
new longevity genes without a priori hypothesis, the power 
of hypothesis-driven candidate approaches is much higher 
than that of genome-wide association studies where millions 
of SNPs are tested, and multiple comparisons have to be 
taken into consideration as an essential part of determining 
statistical significance (56). Hence, so far it has been difficult 
to detect new longevity variants by genome-wide studies, 
and apart from the APOE locus, none of the reported 
genome-wide association studies signals achieved con-
ventional levels of statistical significance (51,57,58).  
Altogether, candidate gene association studies still play an 
important role for the identification of longevity loci.

With the applied approach, we are likely to have captured 
all common variation present in the analyzed samples for 
the CYP2C gene region. Acknowledging that the selected 
markers might be insufficient to tag the genetic variation 
comprehensively, we cannot rule out the presence of rare 
polymorphisms that could influence longevity. However, 
with the consideration of haplotype differences, if present, 
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Table 1. Association Statistics for 56 SNPs Located in the CYP2C Gene Region (for the centenarian subset)

Gene SNP
Position on CHR 10  

(GRCh37/hg19) Min AF Cases Min AF Controls pCCA Bonferroni-Adjusted pCCA

CYP2C18 rs10736086 96441650 .489 .503 .45 1
rs12249418 96442917 .242 .215 .08 1
rs1575934 96445609 .464 .448 .36 1
rs7896133 96464730 .059 .069 .24 1
rs11188059 96468899 .106 .131 .04 1
rs7914753 96486504 .464 .448 .36 1
rs2281891 96493058 .164 .164 .99 1
rs1042192 96495284 .166 .167 .97 1
rs1042194 96495484 .164 .163 .92 1
rs1326830 96495793 .008 .012 .28 1

CYP2C19 rs12248560 96521657 .241 .216 .11 1
rs4986894 96522365 .164 .165 .95 1
rs6583954 96534263 .166 .166 .99 1
rs4388808 96536056 .158 .168 .47 1
rs7088784 96541373 .059 .068 .31 1
rs1322179 96575242 .164 .164 .99 1
rs10786172 96581094 .334 .344 .54 1
rs12253253 96582156 .241 .213 .07 1
rs7915414 96599510 .223 .232 .54 1
rs1555474 96605327 .464 .450 .44 1
rs4917623 96609568 .491 .502 .55 1
rs11592225 96627191 .143 .136 .59 1

CYP2C9 rs2475377 96690371 .044 .049 .53 1
rs4918758 96697252 .379 .381 .93 1
rs9332105 96698925 .186 .181 .71 1
rs9332113 96700402 .187 .181 .68 1
rs12772884 96700630 .386 .416 .10 1
rs1799853 96702047 .122 .125 .82 1
rs12572351 96703220 .186 .180 .65 1
rs4918766 96711884 .380 .377 .87 1
rs2475376 96712400 .148 .149 .92 1
rs2153628 96723424 .236 .212 .11 1
rs1856908 96732731 .339 .362 .20 1
rs9332197 96740908 .038 .049 .14 1
rs1057910 96741053 .058 .065 .44 1
rs1934967 96741426 .191 .211 .17 1
rs2153629 96741795 .135 .129 .66 1
rs9332222 96744064 .134 .125 .46 1
rs1057911 96748737 .058 .066 .42 1
rs9332242 96748893 .134 .125 .46 1
rs9332245 96749181 .063 .068 .52 1
rs4918797 96750251 .196 .196 .98 1

CYP2C8 rs1934954 96792202 .090 .079 .27 1
rs11572181 96795046 .061 .052 .29 1
rs1058932 96796861 .201 .197 .81 1
rs1934952 96797500 .344 .346 .92 1
rs10509681 96798749 .118 .107 .36 1
rs2275620 96802598 .345 .372 .12 1
rs1891073 96804911 .305 .327 .19 1
rs11572139 96808886 .302 .296 .70 1
rs6583967 96814475 .301 .294 .70 1
rs11572127 96814689 .043 .049 .45 1
rs1058930 96818119 .052 .059 .41 1
rs10882525 96825332 .353 .333 .24 1
rs17110453 96829529 .146 .150 .73 1
rs1557044 96831389 .136 .138 .88 1

Notes: Centenarian subset: 616 German centenarians = 100–109 years; 945 younger controls = 60–75 years; CHR 10 = chromosome 10; GRCh37 = 
Genome Reference Consortium Human genome build 37; hg19 = release of the February 2009 human genome browser, UCSC version hg19; Min AF = minor 
allele frequency; pCCA = p value obtained from an allele-based case-control comparison using a c2 test with 1 df; SNP = single nucleotide polymorphism. 
Bold indicates SNP showed a nominally significant association signal in the analysis of the centenarian sample but did not pass correction for multiple  
testing.
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the effect of rare variants should be statistically detectable as 
these effects ought to be carried by one of the common 
background haplotypes (59). Furthermore, common variants 
can act as significant modifiers of the effects of rare variants 
(60). Thus, rare variants that are functionally relevant are 
often identified by common variant associations (61–64). 
Altogether, it seems unlikely that we have missed such rare 
variant effects in our comprehensive approach. The possi-
bility that the negative association finding is due to popula-
tion stratification in our samples is also rather improbable 
because the validity and efficacy of our large and well-char-
acterized study population for genetic longevity research 
have already been shown with the identification and valida-
tion of previous association findings (26,32–34). Overall, 
our results suggest that there is no noteworthy influence of 
sequence variation in the CYP2C genes on human longevity 
in Germans.
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