143 research outputs found

    Protein metabolism in leg muscle following an endotoxin injection in healthy volunteers

    Get PDF
    A B S T R A C T The human endotoxin model has been used to study the early phase of sepsis. The aim of the present study was to assess leg muscle protein kinetics after an endotoxin challenge given to healthy human volunteers. Six healthy male subjects were studied in the post-absorptive state before and during 4 h following an intravenous endotoxin bolus (4 ng/kg of body weight). Primed continuous infusion of [ 2 H 5 ]phenylalanine and [ 2 H 3 ]3-methylhistidine in combination with sampling from the radial artery, femoral vein and muscle tissue were used to assess leg muscle protein kinetics. Both two-and three-compartment models were used to calculate protein kinetics. In addition 26S proteasome activity and protein ubiquitination were assessed. An increase in the net release of phenylalanine from the leg following the endotoxin challenge was observed; however, this phenylalanine originates from the free intracellular pool and not from protein. Net protein balance was unchanged, whereas both protein synthesis and breakdown were decreased. Degradation rates of contractile proteins were not affected by endotoxin, as indicated by an unchanged rate of appearance of 3-methylhistidine from leg muscle. In addition, proteasome activity and protein ubiquitination were unaffected by endotoxaemia. In conclusion, intravenous endotoxin administration to healthy volunteers resulted in an increased release of free phenylalanine from skeletal muscle, whereas protein balance was unaffected. Both protein synthesis and breakdown were decreased to a similar extent

    Peroxisome proliferator-activated receptor γ agonism attenuates endotoxaemia-induced muscle protein loss and lactate accumulation in rats

    Get PDF
    The peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone (Rosi) appears to provide protection against organ dysfunction during endotoxaemia. We examined the potential benefits of Rosi on skeletal muscle protein maintenance and carbohydrate metabolism during lipopolysaccharide (LPS)-induced endotoxaemia. Sprague-Dawley rats were fed either standard chow (control) or standard chow containing Rosi (8.5±0.1 mg.kg-1.day-1) for two weeks before and during 24 h continuous intravenous infusion of LPS (15 μg.kg-1.h-1) or saline. Rosi blunted LPS-induced increases in muscle tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA by 70% (P<0.05) and 64% (P<0.01), respectively. Furthermore, Rosi suppressed the LPS-induced reduction in phosphorylated AKT and phosphorylated Forkhead box O (FOXO) 1 protein, as well as the upregulation of muscle RING finger 1 (MuRF1; P<0.01) mRNA, and the LPS-induced increase in 20S proteasome activity (P<0.05). Accordingly, LPS reduced the muscle protein:DNA ratio (~30%, P<0.001), which Rosi offset. Increased muscle pyruvate dehydrogenase kinase 4 (PDK4) mRNA (P<0.001) and muscle lactate accumulation (P<0.001) during endotoxaemia were suppressed by Rosi. Thus, pre-treatment with Rosi reduced muscle cytokine accumulation and blunted muscle protein loss and lactate accumulation during endotoxaemia, and at least in part by reducing activation of molecular events known to increase muscle protein breakdown and mitochondrial pyruvate use

    Deletion of Nlrp3 protects from inflammation-induced skeletal muscle atrophy

    Get PDF
    BACKGROUND: Critically ill patients develop atrophic muscle failure, which increases morbidity and mortality. Interleukin-1β (IL-1β) is activated early in sepsis. Whether IL-1β acts directly on muscle cells and whether its inhibition prevents atrophy is unknown. We aimed to investigate if IL-1β activation via the Nlrp3 inflammasome is involved in inflammation-induced atrophy. METHODS: We performed an experimental study and prospective animal trial. The effect of IL-1β on differentiated C2C12 muscle cells was investigated by analyzing gene-and-protein expression, and atrophy response. Polymicrobial sepsis was induced by cecum ligation and puncture surgery in Nlrp3 knockout and wild type mice. Skeletal muscle morphology, gene and protein expression, and atrophy markers were used to analyze the atrophy response. Immunostaining and reporter-gene assays showed that IL-1β signaling is contained and active in myocytes. RESULTS: Immunostaining and reporter gene assays showed that IL-1β signaling is contained and active in myocytes. IL-1β increased Il6 and atrogene gene expression resulting in myocyte atrophy. Nlrp3 knockout mice showed reduced IL-1β serum levels in sepsis. As determined by muscle morphology, organ weights, gene expression, and protein content, muscle atrophy was attenuated in septic Nlrp3 knockout mice, compared to septic wild-type mice 96 h after surgery. CONCLUSIONS: IL-1β directly acts on myocytes to cause atrophy in sepsis. Inhibition of IL-1β activation by targeting Nlrp3 could be useful to prevent inflammation-induced muscle failure in critically ill patients

    Dental methacrylates may exert genotoxic effects via the oxidative induction of DNA double strand breaks and the inhibition of their repair

    Get PDF
    Methacrylate monomers used in dentistry have been shown to induce DNA double strand breaks (DSBs), one of the most serious DNA damage. In the present work we show that a model dental adhesive consisting of 45% 2-hydroxyethyl methacrylate (HEMA) and 55% bisphenol A-diglycidyl dimethacrylate (Bis-GMA) at concentrations up to 0.25 mM Bis-GMA induced oxidative DNA in cultured primary human gingival fibroblasts (HGFs) as evaluated by the comet assay and probed with human 8-hydroxyguanine DNA-glycosylase 1. HEMA/Bis-GMA induced DSBs in HGFs as assessed by the neutral comet assay and phosphorylation of the H2AX histone and sodium ascorbate or melatonin (5-methoxy-N-acetyltryptamine) both at 50 μM reduced the DSBs, they also inhibited apoptosis induced by HEMA/Bis-GMA. The adhesive slowed the kinetics of the repair of DNA damage induced by hydrogen peroxide in HGFs, while sodium ascorbate or melatonin improved the efficacy of H2O2-induced damage in the presence of the methacrylates. The adhesive induced a rise in the G2/M cell population, accompanied by a reduction in the S cell population and an increase in G0/G1 cell population. Sodium ascorbate or melatonin elevated the S population and reduced the G2/M population. In conclusion, HEMA/Bis-GMA induce DSBs through, at least in part, oxidative mechanisms, and these compounds may interfere with DSBs repair. Vitamin C or melatonin may reduce the detrimental effects induced by methacrylates applied in dentistry

    Intensive care unit—acquired weakness (ICUAW) and muscle wasting in critically ill patients with severe sepsis and septic shock

    Get PDF
    Sepsis presents a major health care problem and remains one of the leading causes of death within the intensive care unit (ICU). Therapeutic approaches against severe sepsis and septic shock focus on early identification. Adequate source control, administration of antibiotics, preload optimization by fluid resuscitation and further hemodynamic stabilisation using vasopressors whenever appropriate are considered pivotal within the early—golden—hours of sepsis. However, organ dysfunction develops frequently in and represents a significant comorbidity of sepsis. A considerable amount of patients with sepsis will show signs of severe muscle wasting and/or ICU-acquired weakness (ICUAW), which describes a frequently observed complication in critically ill patients and refers to clinically weak ICU patients in whom there is no plausible aetiology other than critical illness. Some authors consider ICUAW as neuromuscular organ failure, caused by dysfunction of the motor unit, which consists of peripheral nerve, neuromuscular junction and skeletal muscle fibre. Electrophysiologic and/or biopsy studies facilitate further subclassification of ICUAW as critical illness myopathy, critical illness polyneuropathy or critical illness myoneuropathy, their combination. ICUAW may protract weaning from mechanical ventilation and impede rehabilitation measures, resulting in increased morbidity and mortality. This review provides an insight on the available literature on sepsis-mediated muscle wasting, ICUAW and their potential pathomechanisms

    2-Hydroxylethyl methacrylate (HEMA), a tooth restoration component, exerts its genotoxic effects in human gingival fibroblasts trough methacrylic acid, an immediate product of its degradation

    Get PDF
    HEMA (2-hydroxyethyl methacrylate), a methacrylate commonly used in dentistry, was reported to induce genotoxic effects, but their mechanism is not fully understood. HEMA may be degraded by the oral cavity esterases or through mechanical stress following the chewing process. Methacrylic acid (MAA) is the primary product of HEMA degradation. In the present work we compared cytotoxic and genotoxic effects induced by HEMA and MAA in human gingival fibroblasts (HGFs). A 6-h exposure to HEMA or MAA induced a weak decrease in the viability of HGFs. Neither HEMA nor MAA induced strand breaks in the isolated plasmid DNA, but both compounds evoked DNA damage in HGFs, as evaluated by the alkaline comet assay. Oxidative modifications to the DNA bases were monitored by the DNA repair enzymes Endo III and Fpg. DNA damage induced by HEMA and MAA was not persistent and was removed during a 120 min repair incubation. Results from the neutral comet assay indicated that both compounds induced DNA double strand breaks (DSBs) and they were confirmed by the γ-H2AX assay. Both compounds induced apoptosis and perturbed the cell cycle. Therefore, methacrylic acid, a product of HEMA degradation, may be involved in its cytotoxic and genotoxic action
    corecore