76 research outputs found

    238U-230Th-226Ra Disequilibria Constraints on the Magmatic Evolution of the Cumbre Vieja Volcanics on La Palma, Canary Islands

    Get PDF
    A suite of 48 samples, including both historical and prehistoric lavas and some plutonic rocks, have been analysed from the Cumbre Vieja rift, La Palma, Canary Islands. Additionally, mineral–melt partition coefficients have been measured for clinopyroxene, plagioclase, amphibole, titanite and apatite in selected rocks. The lavas range from basanite to phonolite (SiO2 = 41·2–57·5 wt % and MgO = 10–0·8 wt %) in composition and form coherent, curvilinear major and trace element arrays in variation diagrams, irrespective of eruption age. The mafic lavas have typical ocean island incompatible trace element patterns and Sr, Nd and Pb isotope compositions show little variation but have a HIMU-type character. Generation of the parental magmas is inferred to have involved ∌4% dynamic melting of a garnet lherzolite source that may have previously been metasomatized by melts derived from a recycled mafic component containing residual phlogopite. The major process of differentiation to phonotephrite involved fractional crystallization of basanitic magmas that evolved along the same liquid line of descent under similar pressure–temperature conditions. Numerical simulations using the MELTS algorithm suggest that this occurred across a temperature interval from c. 1320 to 950°C at 400 MPa and an oxygen fugacity equivalent to quartz–fayalite–magnetite (QFM), with an initial H2O content of 0·3 wt %. The later stages of differentiation (<5 wt % MgO) were dominated by mixing with partial melts of young syenites formed from earlier magma batches. All of the lavas are characterized by 230Th and 226Ra excesses and (230Th/238U) decreases with decreasing Nb/U and increasing SiO2, with no accompanying change in (226Ra/230Th). To explain the observations, we propose a model in which there was a significant role for amphibole, and more importantly accessory titanite, in decre'asing Nb/U, Ce/Pb and Th/U ratios and increasing or buffering (226Ra/230Th) ratios during the later stages of differentiation and magma mixing. These processes all occurred over a few millennia in small magma batches that were repeatedly emplaced within the mid-crust of the Cumbre Vieja rift system prior to rapid transport to the surface

    CUL5-ARIH2 E3-E3 ubiquitin ligase structure reveals cullin-specific NEDD8 activation

    Get PDF
    An emerging mechanism of ubiquitylation involves partnering of two distinct E3 ligases. In the best-characterized E3-E3 pathways, ARIH-family RING-between-RING (RBR) E3s ligate ubiquitin to substrates of neddylated cullin-RING E3s. The E3 ARIH2 has been implicated in ubiquitylation of substrates of neddylated CUL5-RBX2-based E3s, including APOBEC3-family substrates of the host E3 hijacked by HIV-1 virion infectivity factor (Vif). However, the structural mechanisms remained elusive. Here structural and biochemical analyses reveal distinctive ARIH2 autoinhibition, and activation on assembly with neddylated CUL5-RBX2. Comparison to structures of E3-E3 assemblies comprising ARIH1 and neddylated CUL1-RBX1-based E3s shows cullin-specific regulation by NEDD8. Whereas CUL1-linked NEDD8 directly recruits ARIH1, CUL5-linked NEDD8 does not bind ARIH2. Instead, the data reveal an allosteric mechanism. NEDD8 uniquely contacts covalently linked CUL5, and elicits structural rearrangements that unveil cryptic ARIH2-binding sites. The data reveal how a ubiquitin-like protein induces protein-protein interactions indirectly, through allostery. Allosteric specificity of ubiquitin-like protein modifications may offer opportunities for therapeutic targeting.We thank D. Bollschweiler and T. SchÀfer of the cryo-EM facility and we thank the crystallography facility at Max Planck Institute of Biochemistry

    Floating stones off El Hierro, Canary Islands: xenoliths of pre-island sedimentary origin in the early products of the October 2011 eruption

    Get PDF
    The eruption that started off the south coast of El Hierro, Canary Islands, in October 2011 has emitted intriguing eruption products found floating in the sea. These specimens appeared as floating volcanic "bombs" that have in the meantime been termed "restingolites" (after the close-by village of La Restinga) and exhibit cores of white and porous pumice-like material. Currently the nature and origin of these "floating stones" is vigorously debated among researchers, with important implications for the interpretation of the hazard potential of the ongoing eruption. The "restingolites" have been proposed to be either (i) juvenile high-silica magma (e.g. rhyolite), (ii) remelted magmatic material (trachyte), (iii) altered volcanic rock, or (iv) reheated hyaloclastites or zeolite from the submarine slopes of El Hierro. Here, we provide evidence that supports yet a different conclusion. We have collected and analysed the structure and composition of samples and compared the results to previous work on similar rocks found in the archipelago. Based on their high silica content, the lack of igneous trace element signatures, and the presence of remnant quartz crystals, jasper fragments and carbonate relicts, we conclude that "restingolites" are in fact xenoliths from pre-island sedimentary rocks that were picked up and heated by the ascending magma causing them to partially melt and vesiculate. They hence represent messengers from depth that help us to understand the interaction between ascending magma and crustal lithologies in the Canary Islands as well as in similar Atlantic islands that rest on sediment/covered ocean crust (e.g. Cape Verdes, Azores). The occurrence of these "restingolites" does therefore not indicate the presence of an explosive high-silica magma that is involved in the ongoing eruption

    Geomorphology and age constraints of seamounts in the Cabo Verde Archipelago, and their relationship to island ages and geodynamic evolution

    Get PDF
    The Cabo Verde Archipelago is related to a mantle plume located close to the rotational pole of the African Plate. It consists of islands and seamounts arranged in a horseshoe‐shaped pattern open to the west, thus forming two volcanic chains, each with a weak east‐west age progression. High‐resolution swath bathymetry of 12 Cabo Verde seamounts is used here to assign each seamount to its pre‐shield, shield or post‐shield evolutionary stage, respectively. The eastern seamounts exhibit degraded and partially eroded morphologies, and are mainly in their post‐shield stage. A new 40Ar‐39Ar date for Senghor Seamount at 14.872 ± 0.027 Ma supports old ages for the eastern seamounts. The western seamounts generally exhibit younger volcanic‐edifice‐construction morphologies, showing fresh effusive and explosive volcanics, including rarely observed deep‐water explosive volcanism in the Charles Darwin Volcanic Field. Furthermore, the two previously unknown seamounts Sodade and Tavares in the westernmost termini of both volcanic chains exhibit pristine volcanic morphologies, in agreement with present‐day volcanism and seismic activity recorded from the western seamounts. The islands and seamounts rest on three submarine platforms to the east, northwest and southwest, respectively. Taken together, the seamount and island data suggest a shift in igneous activity from the eastern to the other platforms at about 8–6 Ma. However, the complex evolution pattern for both volcanic chains includes the simultaneous occurrence of pre‐shield or shield edifices at any time, followed by erosional and rejuvenation stages. The new seamount data still demonstrate ongoing westward submarine‐growth in both volcanic chains

    Origin and ascent history of unusually crystal-rich alkaline basaltic magmas from the western Pannonian Basin

    Get PDF
    The last eruptions of the monogenetic Bakony-Balaton Highland Volcanic Field (western Pannonian Basin, Hungary) produced unusually crystal- and xenolith-rich alkaline basalts which are unique among the alkaline basalts of the Carpathian- Pannonian Region. Similar alkaline basalts are only rarely known in other volcanic fields of the world. These special basaltic magmas fed the eruptions of two closely located volcanic centres: the BondorĂł-hegy and the FĂŒzes-tĂł scoria cone. Their uncommon enrichment in diverse crystals produced unique rock textures and modified original magma compositions (13.1-14.2 wt.% MgO, 459-657 ppm Cr, 455-564 ppm Ni contents). Detailed mineral-scale textural and chemical analyses revealed that the BondorĂł-hegy and FĂŒzes-tĂł alkaline basaltic magmas have a complex ascent history, and that most of their minerals (~30 vol.% of the rocks) represent foreign crystals derived from different levels of the underlying lithosphere. The most abundant xenocrysts, olivine, orthopyroxene, clinopyroxene and spinel, were incorporated from different regions and rock types of the subcontinental lithospheric mantle. Megacrysts of clinopyroxene and spinel could have originated from pegmatitic veins / sills which probably represent magmas crystallized near the crust-mantle boundary. Green clinopyroxene xenocrysts could have been derived from lower crustal mafic granulites. Minerals that crystallized in situ from the alkaline basaltic melts (olivine with Cr-spinel inclusions, clinopyroxene, plagioclase, Fe-Ti oxides) are only represented by microphenocrysts and overgrowths on the foreign crystals. The vast amount of peridotitic (most common) and mafic granulitic materials indicates a highly effective interaction between the ascending magmas and wall rocks at lithospheric mantle and lower crustal levels. However, fragments from the middle and upper crust are absent from the studied basalts, suggesting a change in the style (and possibly rate) of magma ascent in the crust. These xenocryst- and xenolith-rich basalts yield divers tools for estimating magma ascent rate that is important for hazard forecasting in monogenetic volcanic fields. According to the estimated ascent rates, the BondorĂł-hegy and FĂŒzes-tĂł alkaline basaltic magmas could have reached the surface within hours to few days, similarly to the estimates for other eruptive centres in the Pannonian Basin which were fed by "normal" (crystal- and xenolith-poor) alkaline basalts

    Deep crustal melt plumbing of BĂĄrĂ°arbunga volcano, Iceland

    Get PDF
    Understanding magmatic plumbing within the Earth’s crust is important for understanding volcanic systems and improving eruption forecasting. We discuss magma plumbing under Bárðarbunga volcano, Iceland, over a four-year period encompassing the largest Icelandic eruption in 230 years. Microseismicity extends through the usually ductile region of the Earth’s crust, from 7-22 km depth in a sub-vertical column. Moment tensor solutions for an example earthquake exhibits opening tensile crack behavior. This is consistent with the deep (> 7 km) seismicity being caused by the movement of melt in the normally aseismic crust. The seismically inferred melt path from the mantle source is offset laterally from the center of the Bárðarbunga caldera by ~12 km, rather than lying directly beneath it. It is likely that an aseismic melt feed also exists directly beneath the caldera and is aseismic due to elevated temperatures and pervasive partial melt under the caldera.Funding was by research grants from the NERC and the European Community’s Seventh Framework Program grant 308377 (Project FUTUREVOLC), and a number of graduate studentships from the NERC
    • 

    corecore