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ABSTRACT

A suite of 48 samples, including both historical and prehistoric lavas and some plutonic rocks, have

been analysed from the Cumbre Vieja rift, La Palma, Canary Islands. Additionally, mineral–melt
partition coefficients have been measured for clinopyroxene, plagioclase, amphibole, titanite and

apatite in selected rocks. The lavas range from basanite to phonolite (SiO2¼41�2–57�5 wt % and

MgO¼ 10–0�8 wt %) in composition and form coherent, curvilinear major and trace element arrays

in variation diagrams, irrespective of eruption age. The mafic lavas have typical ocean island in-

compatible trace element patterns and Sr, Nd and Pb isotope compositions show little variation

but have a HIMU-type character. Generation of the parental magmas is inferred to have involved

�4% dynamic melting of a garnet lherzolite source that may have previously been metasomatized
by melts derived from a recycled mafic component containing residual phlogopite. The major pro-

cess of differentiation to phonotephrite involved fractional crystallization of basanitic magmas that

evolved along the same liquid line of descent under similar pressure–temperature conditions.

Numerical simulations using the MELTS algorithm suggest that this occurred across a temperature

interval from c. 1320 to 950�C at 400 MPa and an oxygen fugacity equivalent to quartz–fayalite–

magnetite (QFM), with an initial H2O content of 0�3 wt %. The later stages of differentiation (<5 wt %
MgO) were dominated by mixing with partial melts of young syenites formed from earlier magma

batches. All of the lavas are characterized by 230Th and 226Ra excesses and (230Th/238U) decreases

with decreasing Nb/U and increasing SiO2, with no accompanying change in (226Ra/230Th). To ex-

plain the observations, we propose a model in which there was a significant role for amphibole,

and more importantly accessory titanite, in decre’asing Nb/U, Ce/Pb and Th/U ratios and increasing

or buffering (226Ra/230Th) ratios during the later stages of differentiation and magma mixing. These

processes all occurred over a few millennia in small magma batches that were repeatedly
emplaced within the mid-crust of the Cumbre Vieja rift system prior to rapid transport to the

surface.
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INTRODUCTION

Lavas erupted on ocean islands offer an opportunity to

explore magma evolution away from the possible com-

plicating effects of contamination by continental litho-
sphere. They typically have alkaline affinity and some

ocean islands erupt a continuum of compositions rang-

ing from basanite to phonolite. In addition to traditional

geochemical investigations, the timescale information

afforded by U-series isotope data can place important

constraints on the physical mechanisms involved in

magmatic evolution (Dosseto et al., 2010). Recent
studies have shown that mantle melting rates beneath

mid-ocean ridges and ocean islands are likely to be

controlled by a combination of variable upwelling rates

and the possible presence of mafic lithologies that

commence melting deeper and at faster rates than peri-

dotite (e.g. Kokfelt et al., 2003; Bourdon et al., 2005;
Koornneef et al., 2012; Elkins et al., 2014; Turner et al.,

2015). After segregation from the mantle, primitive

melts probably ascend by channelled flow at rates that

are too fast to be recorded by 230Th or 226Ra (e.g. Turner

et al., 2001; Stracke et al., 2006; Turner & Bourdon,

2010). If correct, the 226Ra data can then be used to gain

insights into the porosity of the melting region.
However, such melts may become modified by inter-

action with fusible components in the lithosphere (e.g.

Claude-Ivanaj et al., 1998; Lundstrom et al., 2003) and

disequilibria can decay during subsequent magma stor-

age and evolution in the crust. In the simplest case of

crystallization in response to cooling, small and shallow
magma systems are likely to promote rapid differenti-

ation (e.g. Blake & Rogers, 2005; Turner et al., 2010)

whereas deep or large systems will evolve more slowly

(e.g. Annen et al., 2006; Dosseto et al., 2008). Moreover,

the effects of assimilation can promote faster differenti-

ation than might occur under closed-system situations

(George et al., 2004). To assess some of these proc-
esses further we undertook a full geochemical and

U-series investigation of young lavas from La Palma at

the western end of the Canary Islands archipelago to

complement an earlier study of Lanzarote at the eastern

end (Thomas et al., 1999). We combine our new results

with previously published data to explore the time-
scales of magma evolution beneath this island.

GEOLOGICAL BACKGROUND AND SAMPLE
SELECTION

The shallow bathymetry of the Canary Islands archipel-

ago relative to the age of the plate (150–175 Ma) is
inferred to reflect the impingement of a mantle plume

on the base of the lithosphere. Geophysical data

indicate that this plume has a low buoyancy flux of

�1 Mg s–1 (Sleep, 1990). La Palma lies at the western

end of the island chain and is volcanically active (Fig. 1).

It consists of three main volcanic units, as described in
detail by Middlemost (1972), Ancochea et al. (1994)

and Carracedo et al. (2001): a 4–2 Ma basal complex, a

1�7–0�4 Ma older volcanic series, and a <123 kyr vol-

canic series that includes seven historical eruptions

(see below). As shown in Fig. 1, all of the recent erup-

tions are confined to Cumbre Vieja, a north–

south-trending rift zone in the southern half of the
island (Middlemost, 1972). Lava compositions range

from basanite to phonolite.

The petrography of the lavas is illustrated in Fig. 2.

The petrography of samples from the 1949 and 1585

eruptions has been described in detail by Klügel et al.

(2000, 2005) and Johansen et al. (2005), respectively.

The basanites and tephrites occasionally contain xeno-
liths of pyroxenite, gabbro, amphibole cumulate and

phonolite (e.g. Klügel et al., 2000; Johansen et al., 2005).

In general, the basanites contain 5–20% phenocrysts of

titaniferous augite and olivine in subequal amounts,

along with minor Ti-magnetite, set in a glassy matrix

containing abundant plagioclase, clinopyroxene, oliv-
ine, and Fe–Ti oxide microlites. The tephrites contain

phenocrysts of kaersutitic amphibole, clinopyroxene,

Ti-magnetite and rare olivine in a groundmass of glass,

plagioclase, clinopyroxene and Fe–Ti oxides.

Phonotephrites and tephriphonolites contain pheno-

crysts of kaersutitic amphibole, plagioclase, clinopyrox-
ene, haüyne, titanite, opaque oxides and minor apatite.

The phonolites contain phenocrysts of plagioclase

(10%), kaersutitic amphibole (2%), clinopyroxene (3%),

haüyne, titanite, and minor apatite and Fe–Ti oxide.

Glomerocrystic aggregates are common in all of the

rock types.

The mineral chemistry has been documented and in-
terpreted by Klügel et al. (2000) and we have not under-

taken further appraisal as part of the present study.

Previous studies inferred crystallization temperatures of

1220–1110�C and redox conditions slightly above the

quartz–fayalite–magnetite (QFM) buffer (Klügel et al.,

2000). Thermobarometry and fluid inclusion studies

suggest that the Cumbre Vieja magmas differentiated

and ponded at two successive pressures (410–770 and

240–470 MPa) corresponding to �20 km depth within

the lithospheric mantle and �13 km near the base of the

oceanic crust (Klügel et al., 2000, 2005). Based on

phenocryst zonation and the presence of amphibole

breakdown rims in the tephrites, Klügel et al. (1997,

2000) argued for melt ascent from the mantle magma

storage reservoirs to the surface within hours to days.
Geochemical data indicate that the primary Cumbre

Vieja magmas are similar to those erupted on Lanzarote

and were generated by small (1–5%) degrees of partial

melting within the garnet stability field (Elliott, 1991;

Thomas et al., 1999). Magmatic evolution has been sug-

gested to occur via crystal fractionation combined with

mixing between discrete magma batches, as indicated
by major element modelling and reversely zoned

phenocrysts (Klügel et al., 2000; Praegel & Holm, 2006).

Radiogenic isotope data indicate a HIMU-type mantle

source composition (Elliott, 1991; Hoernle et al., 1991),

which has been inferred potentially to contain up to

10% of recycled pyroxenite or eclogite (Praegel & Holm,

2000 Journal of Petrology, 2015, Vol. 56, No. 10
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Fig. 1. Map of the Cumbre Vieja rift on La Palma showing the sample locations of this study [modified after Carracedo et al. (1999)].
Coloured areas represent historical eruptions; grey circles are locations where eruption ages were obtained by the K–Ar unspiked
method (Guillou et al., 1998).
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2006; Day et al., 2010). Previously published U-series

data from the other Canary Islands have been used to

constrain mantle melting processes, lithospheric inter-

action and differentiation timescales (Sigmarsson et al.,
1992; Thomas et al., 1999; Lundstrom et al., 2003). For

La Palma, Johansen et al. (2005) used U-series data

from the products of the AD 1585 eruption to infer that

differentiation from basanite to phonolite occurred

within 1550–1750 years.

We selected 19 samples from the 1971, 1949, 1712,

1677, 1646 and AD 1480 eruptions and 29 samples from
prehistoric lava flows as well as four intrusive rocks rep-

resenting possible crustal contaminants, for major and

trace element analysis (Tables 1–3). From these, a sub-

set of 12 samples was selected for Sr–Nd–Pb isotope

analysis (Table 4). Tables 3 and 4 also include some pre-

viously published data (identified by italics) from Klügel
et al. (2000) and Johansen et al. (2005). We also chose

21 samples for U-series isotope analysis, including

13 prehistoric samples (Table 5). Ra isotope data were

obtained on 11 of the historical samples and seven of

the prehistoric samples, the latter to ascertain whether

or not their Th isotope ratios could have been modified
by post-eruptive decay.

To permit quantitative trace element modelling,

mineral–melt partition coefficients were measured for

clinopyroxene, plagioclase, amphibole, titanite and apa-

tite in rocks selected to encompass the full compos-

itional array of the suite. These data should also be of

use in studies of other suites of ocean island alkaline
volcanic rocks.

ANALYTICAL TECHNIQUES

Fresh hand specimens free of any signs of weathering

were crushed in a steel jaw crusher. Sample chips were
then repeatedly washed with deionized water in an

ultrasonic bath until a clear solution was obtained.

Fig. 2. Plane-polarized light photomicrographs of a representative basanite, tephrite, phonotephrite, tephriphonolite and phonolite
from Cumbre Vieja. The phonolite includes a small fragment of a haüyne–amphibole gabbro xenolith (lower right corner); such
xenoliths are commonly found in Cumbre Vieja lavas.

2002 Journal of Petrology, 2015, Vol. 56, No. 10
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Table 1: Sample descriptions, locations and map coordinates for La Palma samples

Sample no. Rock type and description Locality metres
a.s.l.

Coordinates

1971 eruption
TLP 31-1 Tephrite flow At contact with 1677 flow, by road 120 221704/3151311
TLP 78-1 Basanite flow From vent just underneath V. de Teneguia, north side 368 221201/3152954
TLP 79-1 Basanite, block of aa lava SW flank of V. de Teneguia, upper part of flow 327 220627/3152640
TLP 81-1 Basanite, block of aa lava Seaside road, at the end of the same flow as TLP 79/80 49 220470/3151928
TLP 85-1 Basanite, block of aa lava Same flow as TLP 82-1, SE of V. de Teneguia 307 221162/3152275
1712 eruption
TLP 6-1 Basanite or tephrite Same flow as 5-1, lowermost sequence 1263 220895/3162749
TLP 6-6 Basanite Same flow as 5-1, uppermost sequence 1268 220895/3162749
TLP 98-1 Basanite, aa flow Northernmost 1712 flow close to north flank, by foot trail 569 218705/3163693
TLP 111-1 Basanite flow, 1 m thick,

uppermost unit
About halfway between P.I.R.S. and main road, south

side of road
921 220118/3161870

1677 eruption
TLP 25-3 Gabbro xenolith East flank of V. de San Antonio 648 221447/3154102
TLP 30-1 Basanite flow Near intersection with road towards Faro de

Fuencaliente
91 221724/3151120

TLP 30-2 Amphibole-pyroxenite
cumulate xenolith

From same flow as TLP 30-1 91 221724/3151120

TLP 77-1 Basanite flow,
pahoehoe, uppermost
sequence

Midway between V. San Antonio and Teneguia, by road 457 220841/3153338

1646 eruption
TLP 40-1 Basanite bomb Rim of the 2nd crater of the S. Martin system 1572 222334/3160250
TLP 43-1 Basanite bomb Southernmost crater of the S. Martin system 1494 222185/3159651
TLP 76-1 Basanite flow, pahoehoe Flank eruption near El Puertito 100 224927/3156120
TLP 119-1 Basanite flow, 1 m thick At roadcut, 80 m further north from previous location 1121 223186/3158481
1480 eruption
TLP 58-1 Basanite, pahoehoe Central part of 1480 flow, close to vent 1151 222457/3170142
TLP 62-1 Basanite, aa block Central part of 1480 flow, relatively near Mña Colorada 883 221358/3172610
Prehistoric

lavas
TLP 9-1 Tephrite flow SE of Mña de los Pérez 1050 221663/3157050
TLP 10-1 Phonolite plug By rocky road NE of Mña del Pino 1059 222891/3157472
TLP 13-1 Phonotephrite bomb West flank of Birigoyo, on ‘volcano trail’ 1632 222136/3167609
TLP 15-1 Basanite flow Mña La Barquita, by ‘volcano trail’ 1618 221906/3167044
TLP 17-1 Basanite bomb NE of Los Charcos 1767 222293/3165952
TLP 18-2 Tephrite bomb, older

than AD 1949
Hoyo Negro crater, buried in soil 1869 222623/3164982

TLP 19-2 Tephriphonolite, spatter Near eruptive vent at Nambroque 1907 222969/3164911
TLP 21-1A-S MORB-type gabbro

xenoliths, 19 samples
Northern rim of Duraznero crater 1850 222466/3164302

TLP 22-1 Basanite bomb Crater slightly south of Duraznero 1882 222419/3163635
TLP 23-1 Basanite bomb Deseada II, 100 m south of peak 1925 222424/3163346
TLP 27-1 Phonolite dome SW of V. de San Antonio, below road 427 220534/3153682
TLP 32-1A Basanite, spatter Cinder cone, uppermost black layer 195 221944/3151992
TLP 32-1B Basanite, spatter Cinder cone, yellow layer underneath the black layer 195 221944/3151992
TLP 34-1 Tephrite bomb East of Mña Negra 1830 222766/3162589
TLP 36-1 Basanite bomb West of Cabrito 1761 222524/3161886
TLP 37-1 Basanite, spatter North of Mña Cabrera 1643 222344/3161120
TLP 38-1 Basanite bomb Mña Cabrera 1630 222344/3160720
TLP 44-1 Basanite bomb Mña Pelada 1390 222035/3159197
TLP 46-1 Phonotephrite flow Volcan Fuego 1227 222690/3158066
TLP 64-1 Basanite bomb Crater just NE of Birigoyo 1647 222713/3167712
TLP 69-1 Tephrite bomb Vent NW of Mña El Caldero 1596 223312/3167192
TLP 70-1 Basanite bomb Peak of Mña El Caldero 1635 223681/3166722
TLP 108-1 Tephrite bomb,

overlain by 20–30 m
thick tephra layer

Mña de Triana, north side of horseshoe-shaped cone 311 214747/3172626

TLP 116-1 Tephrite bomb Mña del Pino, near TV antenna, by dirt road 1000 222250/3156839
TLP 126-1 Tephrite bomb Mña los Riveros, near peak 853 221607/3155597
Volcan de

Taburiente
TLP 52-9 Diorite boulder Barranco Las Angustias �360 217246/3177769
TLP 52-10 Diorite or granodiorite

boulder
Barranco Las Angustias �360 217246/3177769

TLP 52-12 Syenite cobble Barranco Las Angustias �360 217246/3177769
TLP 52-14 Syenite cobble Barranco Las Angustias �360 217246/3177769

Journal of Petrology, 2015, Vol. 56, No. 10 2003

 at G
E

O
M

A
R

 B
ibliothek H

elm
holtz-Z

entrum
 fuer O

zeanforschung on January 5, 2016
http://petrology.oxfordjournals.org/

D
ow

nloaded from
 

http://petrology.oxfordjournals.org/


Following drying overnight sample chips were selected
under a binocular microscope for powder preparation

using an agate mortar and swing mill. A split of 0�5–

2 mm sized chips was put aside for Sr–Nd–Pb chemis-

try. The analytical techniques outlined below have been

described in detail by Kokfelt et al. (2003, 2006). Major

element and selected trace element concentrations

were determined on fused beads using a Philips
PW1480 X-ray fluorescence spectrometer at GEOMAR.

Over the course of the study standard materials JB-2

and JB-3 were repeatedly analysed (n¼ 5) along with

the samples and these results are reported in

Supplementary Data (SD) Electronic Appendix 1 (sup-

plementary data are available for downloading at http://
www.petrology.oxfordjournals.org). Relative standard

deviation (RSD) is well below 0�1% for all oxides except

SiO2 (�0�2%). Accuracy relative to the values of Imai
et al. (1995) is generally better than 2%, except for a 5%

deviation for MgO in JB-2.

Trace element concentrations were measured by in-

ductively coupled plasma mass spectrometry (ICP-MS) on

a ThermoFinnigan Element2 at the Institute of

Geosciences, University of Bremen, following the proced-

ures outlined by Garbe-Schönberg 1993, Schwarz et al.
(2005). Results of repeat digests of USGS reference mater-

ial BCR-2 (n¼11), BIR-1 (n¼2) and BHVO-2 (n¼ 3) and

comparison with preferred values from the GeoReM data-

base (Jochum et al., 2005) are provided in SD Data

Electronic Appendix 2. Reproducibility is better than 10%,

except for Sc, Ni, Rb, Y, Eu, Lu, Hf, Tl, Pb, Th and U (10–
17�5%) in BCR-2 and for Hf, Tl and Pb (11–21%) in BIR-1

and BHVO-2. Accuracy for BCR-2 and BHVO-2 is better

Table 2: XRF major element (normalized to 100% anhydrous) and ICP-MS trace element data* for La Palma lavas

Sample: TLP 78-1 TLP 79-1 TLP 81-1 TLP 85-1 TLP 31-1 KLA 1-5-08 KLA1-2-10*
Age: AD 1971 AD 1971 AD 1971 AD 1971 AD 1971 AD 1949 AD 1949

SiO2 43�15 43�30 43�07 42�88 44�96 44�11 44�21
TiO2 3�74 3�62 3�74 3�76 3�51 3�48 3�40
Al2O3 14�00 14�05 14�34 13�91 16�04 13�90 13�92
FeOtot 14�06 14�07 14�12 14�27 12�87 13�79 13�64
MnO 0�19 0�19 0�19 0�19 0�19 0�201 0�200
MgO 7�67 7�69 7�35 7�68 5�26 8�03 8�27
CaO 11�04 11�07 10�79 11�09 9�59 10�85 10�57
Na2O 3�84 3�73 4�01 3�87 4�71 3�64 3�77
K2O 1�45 1�42 1�49 1�43 1�88 1�31 1�33
P2O5 0�87 0�86 0�91 0�93 0�98 0�69 0�70
Rb 30�5 30�3 32�2 29�0 44�3 28�7 n.d.
Sr 1128 1033 1135 1113 1286 953 n.d.
Y 31�8 31�7 33�4 31�6 33�6 30�6 n.d.
Zr 333 304 317 323 410 314 n.d.
Nb 85 77 84 85 103 79 n.d.
Cs 0�363 0�342 0�357 0�357 0�517 0�335 n.d.
Ba 491 464 503 503 641 436 427�0
Ta 4�40 5�08 5�49 4�85 5�35 4�39 n.d.
Tl 0�00 0�09 0�10 0�00 0�00 0�00 n.d.
Pb 4�15 3�33 3�57 3�32 4�13 2�93 n.d.
Th 7�09 5�99 6�60 7�66 9�60 6�78 n.d.
U 1�89 1�79 1�89 2�00 2�51 1�77 n.d.
Sc 27�5 25�9 23�9 26�8 18�8 26�3 n.d.
V 353 313 304 357 296 326 276
Cr 220 231 202 212 35�4 328 325
Co 50 47�1 45�0 50�8 37�6 50�0 63�0
Ni 98 99 90 99 34 119 139
Cu 89 98 89 90 61 81 n.d.
Zn 126 111 109 128 133 119 121
Ga 22 22 23 22 24 21 n.d.
La 78 74 73 79 92 71 n.d.
Ce 154 153 157 157 175 140 n.d.
Pr 17�54 17�29 17�67 18�13 19�60 15�89 n.d.
Nd 70 69 74 74 76 62 n.d.
Sm 12�76 12�47 13�63 13�69 13�64 11�45 n.d.
Eu 3�73 3�90 3�96 3�96 3�98 3�42 n.d.
Gd 10�93 10�64 10�84 11�48 11�26 9�76 n.d.
Tb 1�37 1�37 1�40 1�43 1�47 1�26 n.d.
Dy 7�59 7�29 7�50 7�69 7�73 6�92 n.d.
Ho 1�28 1�27 1�32 1�36 1�35 1�23 n.d.
Er 3�19 3�21 3�46 3�22 3�39 2�91 n.d.
Tm 0�410 0�411 0�466 0�401 0�429 0�388 n.d.
Yb 2�23 2�31 2�55 2�43 2�52 2�20 n.d.
Lu 0�316 0�293 0�328 0�324 0�362 0�321 n.d.
Hf 7�43 6�72 6�85 7�98 8�74 7�27 n.d.

(continued)
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than 7%, except for Cr, Ni, Cu, Y, Ta and Th in BCR-2 and
Cs, Ba, Ta, Tl, Pb, Th and U in BHVO-2.

The laser ICP-MS methods used for determining

mineral–melt partition coefficients are given in the

Appendix. Representative data for all the main mineral

phases except olivine (for which the concentrations of

most trace elements are too low for analysis) are given

in Table 6 and the full results are provided in SD
Electronic Appendix 3.

Sr, Nd and Pb isotope ratios were determined in static

multi-collection mode by thermal ionization mass spec-

trometry (TIMS) on a Thermo Scientific TRITON (Sr–Nd)

and a Finnigan MAT 262 RPQ2þ at GEOMAR. Chemical

procedures followed those outlined by Jacques et al.
(2013). Sr and Nd isotope ratios were normalized within

run to 86Sr/88Sr¼ 0�1194 and 146Nd/144Nd¼ 0�7219,

respectively. Sample data are reported relative to
87Sr/86Sr¼0�710257 6 8 (n¼ 37) for NBS987,
143Nd/144Nd¼ 0�511848 6 5 (n¼ 12) for La Jolla and
143Nd/144Nd¼ 0�511712 6 6 (n¼ 20) for our in-house Nd

monitor SPEX. Because Pb isotopes were analyzed prior

to the establishment of a Pb double-spike technique

(Hoernle et al., 2011) in our laboratory, the measured

isotope ratios of the La Palma samples were externally
mass bias corrected by normalizing the repeat

measurements of NBS981 (206Pb/204Pb¼ 16�9006 7,
207Pb/204Pb¼ 15�4376 8, 208Pb/204Pb¼36�527 6 27,

n¼ 60, 2003–2004) to our actual double spike (DS)-cor-

rected NBS981 values (206Pb/204Pb¼16�9417 6 27,
207Pb/204Pb¼ 15�4991 6 27, 208Pb/204Pb¼ 36�72506 70,
n¼ 98, 2012–2014). All above-mentioned errors are 2r
external and reported to the last significant digits.

Table 2: Continued

Sample: KLA1-5-07 KLA1-2-15 KLA1-5-19 TLP 6-6 TLP 98-1 TLP 111-1 TLP 6-1
Age: AD 1949 AD 1949 AD 1949 AD 1712 AD 1712 AD 1712 AD 1712

SiO2 44�00 45�73 45�70 42�93 43�09 42�86 43�28
TiO2 3�51 3�39 3�43 3�67 3�71 3�72 3�76
Al2O3 13�82 16�22 16�22 13�31 13�44 13�32 14�93
FeOtot 13�80 11�61 11�77 13�65 13�63 13�84 13�36
MnO 0�202 0�213 0�213 0�19 0�19 0�19 0�20
MgO 8�08 4�95 4�96 8�39 8�12 8�22 6�08
CaO 10�77 9�10 9�19 11�52 11�53 11�60 10�76
Na2O 3�81 5�51 5�30 3�74 3�66 3�71 4�42
K2O 1�28 2�38 2�34 1�67 1�69 1�63 2�05
P2O5 0�73 0�90 0�88 0�93 0�93 0�92 1�17
Rb 33�51 68�91 67�77 40�4 41�2 39�2 52
Sr 1150 1704 1694 1215 1255 1166 1553
Y 38�1 44�4 44�1 34�0 33�4 32�6 39�5
Zr 331 515 512 325 343 307 416
Nb 78 129 127 97 103 92 126
Cs 0�38 0�79 0�77 0�454 0�489 0�442 0�613
Ba 452 794 786 596 630 583 785
Ta 4�10 6�19 6�19 6�09 5�49 6�20 6�72
Tl 0�04 0�07 0�06 0�13 0�00 0�11 0�00
Pb 3�90 6�15 5�82 4�04 3�83 4�34 4�75
Th 6�45 12�56 12�62 8�01 10�18 7�87 13�03
U 1�73 3�54 3�49 2�22 2�59 2�21 3�42
Sc 20 8 11 27�5 27�5 26�4 21�5
V 298 237 257 343 354 312 356
Cr 309 46 47 349 329 343 84
Co 61 28 34 51�0 49�5 46�2 42�6
Ni 133 46 50 121 110 107 52
Cu n.d. n.d. n.d. 101 90 96 72
Zn 127 129 130 114 122 110 132
Ga 28 31 31 22 21 21 23
La 67 109 109 89 97 88 130
Ce 131 201 201 167 185 175 241
Pr 15�60 22�22 22�22 18�76 20�5 19�02 26�0
Nd 60 81 81 69 80 74 98
Sm 11�33 14�18 13�87 12�80 14�11 13�84 16�99
Eu 3�41 4�08 4�09 3�81 4�13 4�03 4�76
Gd 9�92 11�86 11�97 10�74 11�53 11�07 13�32
Tb 1�33 1�53 1�53 1�42 1�46 1�46 1�72
Dy 6�74 7�55 7�62 7�25 7�99 7�83 9�12
Ho 1�19 1�34 1�37 1�27 1�39 1�32 1�58
Er 2�98 3�48 3�51 3�24 3�25 3�41 3�72
Tm 0�36 0�44 0�44 0�422 0�432 0�469 0�477
Yb 2�22 2�71 2�70 2�39 2�47 2�53 2�85
Lu 0�31 0�38 0�37 0�295 0�354 0�334 0�408
Hf 6�79 9�14 9�34 6�48 8�19 7�21 9�10
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U, Th and Ra isotopes and concentrations were ana-

lysed by isotope dilution (ID)-TIMS using the Finnigan

MAT 262 RPQ2þ system at GEOMAR, although some Ra

analyses were also made at the University of Illinois at

Urbana Champaign. Chemical separation and analysis

methods have been described by Kokfelt et al. (2003).
Analyses of the TML rock standard (n¼ 12) yielded

Th¼29�566 2�54 ppm, U¼10�626 0�90 ppm, 226Ra¼
3585655 fg g–1, (234U/238U)¼1�007 6 0�006, (238U/232Th)¼
1�087 6 0�013, (232Th/230Th)¼1�090 6 0�004 and

(226Ra/230Th)¼ 0�988 6 0�020. Data for the rock standard

AThO analysed at the same time as this study have been
reported by Kokfelt et al. (2003). The data for both stand-

ards are within error of published data for these mater-

ials (Sims et al., 2008). The 226Ra data for the historical

eruptions were corrected to eruptive values; no correc-

tion was applied to the Th isotopes.

RESULTS

The new whole-rock data are presented in Tables 2–5
and combined with published data for the AD 1585 erup-

tion (Johansen et al., 2005) in many of the subsequent

diagrams. Overall, the lavas form highly coherent geo-

chemical arrays, irrespective of eruption age. SiO2

ranges from 41�2 to 57�5 wt %, across which range MgO

decreases from 10 to 0�8 wt %. With a Mg# of 63 and Ni

and Cr contents of 309 and 767 ppm, respectively, even
the most primitive basanite (KLA 1-5-13) reported by

Klügel et al. (2000) is significantly more evolved than a

primary mantle melt. In Fig. 3 total alkalis range from

4�4 to 13�9 wt % and the corresponding lava classifica-

tions range from basanite to tephrite, phonotephrite,

tephriphonolite and phonolites (Le Bas et al., 1986).
When plotted versus MgO, TiO2, FeOtot and CaO all de-

crease in concentration with decreasing MgO, whereas

Table 2: Continued

Sample: TLP 25-1 TLP 30-1 TLP 77-1 TLP 11-1 TLP 40-1 TLP 43-1 TLP 76-1
Age: AD 1677 AD 1677 AD 1677 AD 1646 AD 1646 AD 1646 AD 1646

SiO2 43�48 43�21 43�29 42�91 42�93 42�92 42�87
TiO2 3�61 3�65 3�70 3�71 3�69 3�63 3�71
Al2O3 13�71 13�57 13�61 13�20 13�18 12�97 13�47
FeOtot 13�49 13�57 13�41 13�55 13�56 13�69 13�58
MnO 0�19 0�19 0�19 0�19 0�19 0�19 0�19
MgO 7�79 8�02 7�84 8�15 8�06 8�48 7�91
CaO 11�26 11�41 11�74 12�25 12�25 12�29 12�00
Na2O 3�85 3�77 3�66 3�64 3�65 3�43 3�74
K2O 1�75 1�70 1�67 1�54 1�59 1�54 1�60
P2O5 0�87 0�90 0�88 0�87 0�90 0�86 0�93
Rb 42�5 39�9 40�2 36�3 37�9 37�0 37�5
Sr 1267 1228 1276 1203 1276 1183 1216
Y 35�7 35�3 34�8 34�2 34�1 33�6 33�8
Zr 344 334 350 314 340 304 313
Nb 101 98 103 91 99 89 91
Cs 0�480 0�447 0�459 0�393 0�435 0�467 0�409
Ba 642 614 616 568 593 558 585
Ta 6�59 6�46 5�34 5�79 5�09 5�84 5�90
Tl 0�13 0�14 0�00 0�13 0�00 0�06 0�07
Pb 4�55 6�55 3�68 3�83 2�85 2�57 3�77
Th 9�55 9�18 9�06 8�34 10�05 8�42 8�80
U 2�56 2�36 2�30 2�22 2�48 2�23 2�35
Sc 25�2 26�0 29�0 30�0 30�4 30�0 27�3
V 331 319 362 352 372 343 332
Cr 305 322 297 336 318 365 297
Co 49�0 48�0 48�8 49�4 50 49�3 46�6
Ni 109 112 105 112 111 124 105
Cu 97 97 95 113 108 114 112
Zn 121 113 124 121 123 108 110
Ga 22 22 21 22 21 21 22
La 102 100 95 87 100 89 89
Ce 189 182 181 163 187 167 178
Pr 20�9 20�9 20�4 18�23 20�5 18�24 19�46
Nd 75 77 78 71 79 70 76
Sm 13�32 13�79 14�03 12�82 14�37 12�55 13�40
Eu 4�04 4�10 4�08 3�81 4�02 3�96 4�01
Gd 11�49 11�74 12�02 10�58 11�80 11�16 10�80
Tb 1�50 1�47 1�52 1�40 1�47 1�39 1�42
Dy 7�78 8�05 8�08 7�20 8�09 7�50 7�59
Ho 1�41 1�41 1�39 1�28 1�41 1�30 1�32
Er 3�46 3�52 3�41 3�31 3�36 3�25 3�45
Tm 0�463 0�452 0�430 0�444 0�423 0�448 0�480
Yb 2�51 2�55 2�49 2�31 2�34 2�29 2�44
Lu 0�321 0�336 0�356 0�305 0�340 0�306 0�322
Hf 7�32 7�23 7�90 6�62 7�66 6�56 6�92

(continued)

2006 Journal of Petrology, 2015, Vol. 56, No. 10

 at G
E

O
M

A
R

 B
ibliothek H

elm
holtz-Z

entrum
 fuer O

zeanforschung on January 5, 2016
http://petrology.oxfordjournals.org/

D
ow

nloaded from
 

http://petrology.oxfordjournals.org/


SiO2 and Al2O3 (as well as the alkalis) increase. Marked

inflections occur for many elements between 4 and 6 wt
% MgO (Fig. 4). P2O5 also decreases with decreasing

MgO after an initial moderate increase. We note that

there is no distinction between the historical and prehis-

toric lavas in terms of their major element trends, as

shown in Fig. 4.

On mantle-normalized, multi-incompatible element

diagrams the basanites have relatively smooth, convex-
upward patterns that typically peak at Nb–Ta followed

by a steep negative slope from La to Lu (Fig. 5).

Ubiquitous negative anomalies in both K and Pb charac-

terize all of the lavas and they have high U/Pb (m) ratios

(Fig. 5). However, with increasing extent of differenti-

ation the more evolved lavas also develop negative
anomalies in Sr, P and Ti (Fig. 5). A selection of compat-

ible and incompatible trace elements is plotted versus

MgO content in Fig. 6. Compatible trace elements such

as Ni and Cr (not shown) exhibit a curvilinear decrease
with decreasing MgO from 189 to 2 ppm and 613 to

2 ppm, respectively, whereas V and Sc (not shown) con-

centrations show a mild increase between 10 and 8 wt

% MgO, after which they decrease rapidly. As Fig. 5

shows, incompatible elements such as Ba and Pb show

a continuous curvilinear increase as MgO contents de-

crease. In marked contrast to this Nb, Sr, La and Yb all
increase in concentration from 10 to 2 wt % MgO, but

then either become invariant or decrease in concentra-

tion below 2 wt % MgO. As for the major element trends

discussed above, no distinction is observed between

the historical and prehistoric lavas in Fig. 6.

Sr and Nd isotope compositions show limited vari-
ation, with 87Sr/86Sr and 143Nd/144Nd ranging from

0�70308 to 0�70313 and 0�51289 to 0�51290, respectively

Table 2: Continued

Sample: TLP 119-1 TLP 58-1 TLP 62-1 TLP 15-1 TLP 17-1 TLP 22-1 TLP 23-1
Age: AD 1646 AD 1480 AD 1480 prehistoric prehistoric prehistoric prehistoric

SiO2 43�12 43�89 43�47 43�67 43�99 41�21 41�49
TiO2 3�70 3�65 3�66 3�64 3�28 3�67 3�57
Al2O3 13�41 14�39 14�63 14�80 14�54 11�68 11�83
FeOtot 13�47 13�28 13�44 13�21 13�04 13�77 13�79
MnO 0�19 0�21 0�20 0�20 0�20 0�19 0�20
MgO 7�79 6�98 6�90 6�64 7�39 9�84 9�97
CaO 12�20 10�57 10�44 10�37 11�06 12�53 12�05
Na2O 3�64 4�18 4�41 4�44 3�92 4�24 4�21
K2O 1�58 1�94 1�98 2�01 1�69 1�73 1�78
P2O5 0�90 0�91 0�88 1�02 0�89 1�15 1�12
Rb 35�6 48�6 48�7 52 41�7 45�3 45�7
Sr 1223 1271 1214 1329 1025 1445 1431
Y 32�7 37�3 35�2 37�3 33�7 33�8 33�9
Zr 327 396 390 384 340 381 380
Nb 95 113 106 111 94 126 124
Cs 0�433 0�546 0�534 0�542 0�470 0�541 0�541
Ba 584 652 647 649 545 727 713
Ta 5�24 7�76 7�14 6�84 6�29 7�65 7�63
Tl 0�00 0�13 0�12 0�10 0�13 0�12 0�11
Pb 3�82 5�12 5�55 5�49 5�57 4�42 3�75
Th 10�52 8�54 8�07 8�12 8�05 9�29 9�37
U 2�53 2�32 2�21 2�57 2�12 2�55 2�80
Sc 29�3 21�5 21�3 22�9 25�1 24�1 23�5
V 367 302 309 318 318 337 324
Cr 299 258 199 228 283 438 455
Co 48�1 44�3 44�4 43�2 45�6 53�2 53
Ni 101 96 83 74 97 173 189
Cu 104 74 76 79 86 103 97
Zn 121 120 121 123 109 123 125
Ga 21 23 23 24 21 23 23
La 97 94 92 92 75 99 99
Ce 184 183 173 172 147 190 185
Pr 20�0 20�4 19�84 19�63 16�72 21�3 21�0
Nd 79 79 74 73 66 84 81
Sm 14�21 14�38 13�47 13�69 12�58 15�23 14�90
Eu 4�15 4�41 4�19 4�16 3�47 4�52 4�32
Gd 11�79 12�21 11�75 11�51 9�76 12�46 11�81
Tb 1�45 1�57 1�52 1�51 1�33 1�56 1�51
Dy 7�98 8�48 8�07 7�96 7�03 7�84 7�53
Ho 1�37 1�47 1�42 1�38 1�28 1�31 1�27
Er 3�30 3�69 3�41 3�58 3�43 3�25 3�18
Tm 0�411 0�483 0�484 0�480 0�478 0�394 0�405
Yb 2�51 2�72 2�49 2�58 2�72 1�99 2�04
Lu 0�345 0�346 0�333 0�343 0�358 0�254 0�273
Hf 7�88 8�55 8�05 7�85 6�85 7�84 8�08
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(Fig. 7a). The data are displaced towards the field of
mid-ocean ridge basalts, with less radiogenic Sr and

more radiogenic Nd than bulk Earth. Pb isotope com-

positions show slightly more variation, with 206Pb/204Pb

ranging from 19�553 to 19�718, 207Pb/204Pb ranging from

15�597 to 15�612 and 208Pb/204Pb ranging from 39�296 to

39�528. These Pb isotope compositions effectively strad-

dle the Northern Hemisphere Reference Line (NHRL;
Hart, 1984) and extend toward HIMU, although they are

not as radiogenic as basalts from St. Helena or

Polynesia, which have 206Pb/204Pb> 20 (Hauri & Hart,

1993). Overall, the new radiogenic isotope data fall

within the fields previously reported from the Canaries

(e.g. Elliott, 1991; Hoernle & Tilton, 1991; Hoernle et al.,
1991; Sigmarsson et al., 1992; Thirlwall et al., 1997;

Thomas et al., 1999; Praegel & Holm, 2006; Day et al.,

2010) but lie at the high 206Pb/204Pb end with a much
more restricted range (Fig. 7b). There are no correl-

ations between any of the radiogenic isotopes and indi-

ces of differentiation such as SiO2 or MgO (not shown).

Indeed, within the historical lavas, the most evolved

phonolites have primitive Sr–Nd–Pb isotope ratios that

are indistinguishable from those of the basanites and

there is no distinction between historical and prehistoric
samples (Fig. 7).

Th and U concentrations in the lavas range from 5�9
to 20 ppm and from 1�4 to 6�6 ppm, respectively, and

show a curvilinear increase with decreasing MgO con-

tent (Fig. 8a and b). The (234U/238U) ratios are generally

within analytical error (66%) of unity, suggesting that
the samples have undergone minimal post-eruption al-

teration. We therefore assume all activity ratios to

Table 2: Continued

Sample: TLP 32-1A TLP 32-1B TLP 36-1 TLP 37-1 TLP 38-1 TLP 44-1 TLP 64-1
Age: prehistoric prehistoric prehistoric prehistoric prehistoric prehistoric prehistoric

SiO2 43�53 43�59 43�01 43�80 43�87 42�94 44�05
TiO2 3�72 3�79 3�40 3�55 3�51 3�74 3�59
Al2O3 13�67 14�35 13�78 15�41 15�23 13�34 15�15
FeOtot 13�39 13�31 13�56 12�88 12�96 13�63 12�97
MnO 0�19 0�19 0�20 0�20 0�20 0�19 0�20
MgO 8�13 7�27 8�60 6�31 6�49 7�76 6�05
CaO 10�94 10�42 11�26 10�02 10�01 12�12 10�33
Na2O 3�74 4�18 3�65 4�73 4�70 3�77 4�53
K2O 1�77 1�92 1�52 2�10 2�07 1�62 2�07
P2O5 0�90 0�97 1�03 1�00 0�96 0�90 1�06
Rb 41�2 44�9 32�4 58 57 39�3 52
Sr 1291 1408 1227 1556 1501 1287 1345
Y 35�1 37�1 34�0 39�4 41�0 34�4 36�5
Zr 393 417 315 461 426 343 389
Nb 111 121 91 138 116 100 111
Cs 0�450 0�490 0�394 0�689 0�640 0�444 0�554
Ba 626 678 569 763 738 608 661
Ta 5�78 6�22 4�78 7�23 7�34 5�05 7�06
Tl 0�00 0�00 0�00 0�00 0�11 0�00 0�11
Pb 4�74 4�88 3�89 4�69 5�06 3�74 5�16
Th 10�80 11�59 8�71 11�83 10�34 10�04 8�01
U 2�98 3�19 1�88 3�20 2�92 2�48 2�70
Sc 27�2 24�2 25�0 20�4 20�0 30�2 20�9
V 349 353 323 327 297 376 295
Cr 241 198 310 131 136 282 151
Co 48�3 47�0 49�6 42�1 41�3 49�5 37�4
Ni 122 106 131 65 69 102 56
Cu 69 72 81 55 58 105 71
Zn 122 128 118 133 121 121 118
Ga 22 23 20 23 24 21 24
La 104 111 93 115 111 99 85
Ce 194 206 178 221 208 187 170
Pr 21�2 22�7 20�2 24�8 23�0 20�9 18�77
Nd 81 86 79 93 83 79 75
Sm 14�56 15�01 14�29 15�58 14�76 13�67 13�90
Eu 4�12 4�17 4�06 4�46 4�55 3�93 4�23
Gd 12�02 12�32 11�84 12�64 12�37 11�86 11�47
Tb 1�48 1�54 1�47 1�59 1�61 1�45 1�51
Dy 8�07 8�51 8�23 8�88 8�75 7�94 7�96
Ho 1�41 1�46 1�39 1�55 1�50 1�33 1�41
Er 3�40 3�51 3�46 3�74 3�88 3�25 3�70
Tm 0�437 0�435 0�447 0�508 0�521 0�417 0�496
Yb 2�47 2�60 2�59 2�77 3�02 2�36 2�73
Lu 0�351 0�352 0�360 0�400 0�390 0�338 0�368
Hf 8�78 9�06 7�17 9�63 8�35 7�68 8�01
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reflect magmatic processes. On the equiline diagram in

Fig. 8c, the lavas have 230Th excesses with (230Th/238U)
ranging from 1�07 to 1�31. These excesses appear to be

negatively correlated with SiO2, at least for the histor-

ical samples (Fig. 9a). 226Ra concentrations range from

786 to 3288 fg g–1 and (226Ra/230Th) from 1�01 to 1�63,

and all of the prehistoric samples are clearly displaced

to lower (226Ra/230Th) than the historical samples in

Fig. 9b, suggesting that they are likely to be a few thou-
sand years old. Furthermore, one of the prehistoric

samples identified in Fig. 8c is within error of
226Ra–230Th secular equilibrium, such that its age is un-

constrained and it could have undergone 230Th decay

since eruption. The samples that have measurable
226Ra–230Th disequilibria form a broad, positively
inclined array to the left of the equiline whose slope

would correspond to an age of �46 kyr. However, this is

largely defined by three prehistoric samples with

slightly elevated (230Th/232Th). Instead, the presence of
226Ra–230Th disequilibria in many of the samples (his-

torical and prehistoric) and 1–2 kyr whole-rock–titanite

isochrons for some of the phonolites (Johansen et al.,

2005) suggest that this array does not have age signifi-

cance in any simple way (see further discussion below).

An alkali gabbro cumulate (KLA 1-3-03) that was ana-

lysed for U-series isotopes only has a (238U/232Th) ratio
of 0�53, a (230Th/238U) ratio of 2�15 and a (226Ra/230Th)

ratio of 0�65. These ratios are similar to those of titanites

analysed by Johansen et al. (2005) and so it is likely that

the signal is dominated by the titanite present in this

gabbro.

The new partition coefficient data are summarized in
Table 6, with the full dataset reported in SD Electronic

Appendix 3. The clinopyroxene and plagioclase

Table 2: Continued

Sample: TLP 70-1 TLP 9-1 TLP 34-1 TLP 108-1 TLP 126-1 TLP 13-1 TLP 18-2
Age: prehistoric prehistoric prehistoric prehistoric prehistoric prehistoric prehistoric

SiO2 44�60 47�44 46�16 42�97 45�02 50�20 49�83
TiO2 2�98 2�93 3�02 3�91 3�27 2�20 2�25
Al2O3 13�18 17�08 16�71 15�17 16�40 18�59 18�34
FeOtot 12�43 10�42 11�38 13�65 12�12 8�40 8�61
MnO 0�19 0�20 0�20 0�21 0�21 0�19 0�20
MgO 9�47 3�95 4�62 5�56 4�96 2�53 2�75
CaO 11�19 8�53 8�83 10�69 9�56 6�84 7�10
Na2O 3�67 5�92 5�56 4�21 5�16 7�11 7�02
K2O 1�61 2�71 2�52 2�10 2�24 3�22 3�15
P2O5 0�69 0�82 0�99 1�54 1�06 0�73 0�75
Rb 40�2 80 75 47�6 59 109 105
Sr 979 1661 1533 1337 1374 1915 1862
Y 29�3 36�8 36�6 40�3 36�9 40�5 40�5
Zr 287 548 522 449 472 632 619
Nb 83 151 184 110 149 178 176
Cs 0�464 0�992 0�756 0�506 0�622 1�24 1�20
Ba 526 975 915 634 772 1133 1112
Ta 5�32 7�30 9�66 7�43 9�04 9�17 9�03
Tl 0�10 0�01 0�14 0�11 0�15 0�18 0�19
Pb 2�63 7�75 6�07 5�13 5�85 10�84 10�67
Th 7�11 16�78 12�15 7�34 9�56 18�53 18�47
U 2�06 4�72 4�19 2�04 3�03 5�84 5�77
Sc 27�3 15�1 15�5 17�2 16�7 7�2 7�7
V 272 255 257 273 250 177 176
Cr 613 12 33 8 28 3 4
Co 46�6 27 32 36 31 18 18
Ni 181 20 35 22 28 6 8
Cu 98 42 61 52 51 22 20
Zn 99 140 129 123 122 125 131
Ga 19 25 27 23 25 28 27
La 71 133 150 88 121 150 150
Ce 136 235 259 189 229 249 259
Pr 15�31 24�6 25�9 22�2 24�6 25�2 25�4
Nd 57 89 88 90 90 84 84
Sm 10�42 15�04 14�80 17�15 15�36 13�27 13�45
Eu 3�12 4�14 4�36 4�93 4�45 3�90 3�89
Gd 8�88 11�42 12�21 13�26 11�88 10�42 10�50
Tb 1�17 1�49 1�47 1�74 1�54 1�36 1�39
Dy 6�35 8�06 8�48 9�12 8�25 7�42 7�49
Ho 1�14 1�47 1�44 1�60 1�49 1�39 1�37
Er 2�88 3�74 3�48 4�28 3�98 3�63 3�69
Tm 0�398 0�491 0�475 0�561 0�546 0�519 0�521
Yb 2�30 3�06 2�70 3�04 3�01 2�92 2�99
Lu 0�309 0�435 0�375 0�393 0�418 0�407 0�406
Hf 6�11 11�26 9�79 9�68 9�92 9�78 10�13
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partition coefficients are typically within the range re-
ported in compilations such at that of Rollinson (1993).

Partitioning of the rare earth elements (REE) into clino-

pyroxene increases significantly with increasing SiO2,

such that relative REE enrichment in the melt will de-

cline with increased differentiation (see Brophy, 2008).

Th is more compatible than U in the clinopyroxenes

analysed (see Blundy & Wood, 2003). Nb and Ta are
compatible in the analysed amphiboles, consistent with

the findings of Ionov & Hofmann (1995) and Latourrette

et al. (1995). Additionally, the REE are highly compatible

in both apatite and titanite, and both favour Th over

U. Nb and Ta are highly compatible in titanite, but not in

apatite. These results are consistent with those reported
in other recent studies of incompatible trace element

partitioning into accessory phases (e.g. Wörner et al.,

1983; Luhr et al., 1984; Prowatke & Klemme, 2006; Olin
& Wolff, 2012) and should have utility well beyond the

present study.

DISCUSSION

In the following sections we first briefly identify what
constraints can be placed upon the conditions of gener-

ation of the parental magmas. Subsequently, we assess

the effects of magmatic differentiation and appraise evi-

dence for the timescales involved. These conclusions

can be compared with published U-series isotope data

and models for the other Canary Islands (Sigmarsson
et al., 1992, 1998; Thomas et al., 1999; Lundstrom et al.,

2003).

Table 2: Continued

Sample: TLP 46-1 TLP 69-1 TLP 116-1 TLP 19-2 TLP 10-1 TLP 27-1
Age: prehistoric prehistoric prehistoric prehistoric prehistoric prehistoric

SiO2 47�17 47�31 47�75 51�12 57�50 56�04
TiO2 2�99 2�83 2�84 2�02 0�71 0�86
Al2O3 17�04 17�05 17�34 18�79 20�58 20�73
FeOtot 10�55 10�57 10�28 7�73 3�75 4�36
MnO 0�19 0�22 0�20 0�19 0�16 0�15
MgO 4�01 3�65 3�70 2�30 0�81 1�06
CaO 8�64 8�47 8�36 6�41 2�81 2�75
Na2O 5�89 6�07 5�96 7�42 8�79 9�23
K2O 2�70 2�70 2�74 3�37 4�69 4�60
P2O5 0�82 1�12 0�81 0�67 0�20 0�22
Rb 80 75 83 103 146 169
Sr 1605 1666 1593 1822 1020 2006
Y 37�4 38�4 36�5 33�3 18�8 23�7
Zr 510 549 515 618 808 1105
Nb 146 154 142 170 137 267
Cs 0�912 0�897 0�942 1�34 1�81 1�90
Ba 929 925 951 1143 1523 1641
Ta 8�13 7�84 8�66 7�71 4�02 9�98
Tl 0�15 0�00 0�14 0�03 0�11 0�20
Pb 8�14 4�16 8�57 10�39 14�88 26�2
Th 13�93 15�67 14�85 22�71 27�04 51�90
U 4�27 4�81 4�46 6�79 8�79 22�5
Sc 15�2 9�4 13�2 5�6 1�7 2�6
V 247 208 211 155 53 71
Cr 14 2 11 2 3 9
Co 28 22 23 15 4 6
Ni 23 6 17 4 2 6
Cu 49 21 41 15 4 8
Zn 117 145 113 133 119 129
Ga 26 26 25 26 29 35
La 132 128 125 152 135 180
Ce 230 233 226 252 183 250
Pr 23�2 25�3 23�1 25�3 14�69 21�3
Nd 82 94 83 86 44 64
Sm 13�61 15�91 14�10 13�03 5�62 8�49
Eu 4�08 4�56 4�09 3�68 1�64 2�30
Gd 11�43 12�24 11�06 9�90 4�32 6�12
Tb 1�45 1�61 1�46 1�33 0�61 0�85
Dy 7�92 8�85 7�86 7�51 3�78 5�11
Ho 1�36 1�56 1�41 1�36 0�76 0�94
Er 3�50 3�93 3�71 3�61 2�25 2�68
Tm 0�494 0�539 0�522 0�487 0�356 0�401
Yb 2�68 3�41 3�01 3�05 2�47 2�76
Lu 0�359 0�473 0�405 0�461 0�405 0�432
Hf 9�29 11�95 9�93 11�98 14�40 19�05

*Trace element data by XRF.
n.d., not determined.
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Conditions of generation of the parental magmas
Unfortunately, none of the Cumbre Vieja lavas are close
to primary liquids in equilibrium with mantle olivine;

the most primitive basanite has Mg#¼ 63, 309 ppm Ni

and 767 ppm Cr. Nevertheless, the magmas were

clearly generated in the mantle and have steep REE pat-

terns (Fig. 5) that suggest equilibration with residual

garnet. Relatively high U/Pb and 206Pb/204Pb ratios sug-

gest a HIMU-type source. However, the CaO versus
MgO relationships in Fig. 4 are consistent with partial

melting of peridotite followed by extended crystal frac-

tionation and do not demand a role for recycled pyrox-

enite (see Sigmarsson et al., 1998). P/Nd ratios of 50–60

in the basanites are also consistent with melting taking

place in the garnet peridotite facies (O’Neill &
Mallmann, 2007). Nevertheless, the radiogenic isotope

data may require that the source had previously been

metasomatized by melts from a recycled mafic compo-

nent and the negative K anomalies in Fig. 5 could indi-

cate that this component was formed in equilibrium

with residual phlogopite (Elliott, 1991).

The (230Th/238U) and (226Ra/230Th) ratios are highest

in the most mafic historical lavas, indicating that the
disequilibria were created during mantle melting (see

Sigmarsson et al., 1992, 1998; Thomas et al., 1999;

Lundstrom et al., 2003). The magnitude of the 230Th

excesses in mantle-derived melts is largely a function of

the U and Th partition coefficients and the melting rate,

which will be linked to the upwelling rate that controls

the time available for 230Th ingrowth during melting
(e.g. Bourdon & Sims 2003). Garnet will retain U relative

to Th in the mantle (e.g. Beattie, 1993) and the buoyancy

flux of the Canary plume is low (Sleep, 1990), implying

low upwelling rates (�3 cm a–1). Thus, our data are

Table 3: XRF major (normalized to 100% anhydrous) and ICP-MS trace element data for plutonic rocks from La Palma*

Sample: TLP 21-1A TLP 30-2 TLP 52-9 TLP 52-10 TLP 52-12 TLP 52-14

SiO2 49�51 35�65 46�79 48�62 64�18 64�88
TiO2 0�62 5�41 3�74 3�00 0�48 0�61
Al2O3 12�98 12�52 18�26 18�03 18�73 19�25
FeOtot 9�09 14�76 11�25 10�03 0�51 0�89
MnO 0�16 0�15 0�13 0�20 0�01 0�01
MgO 10�96 11�29 3�89 3�28 0�20 0�40
CaO 14�55 14�11 9�79 8�25 4�69 2�79
Na2O 1�92 2�39 4�05 5�37 10�93 10�86
K2O 0�18 1�07 1�57 2�27 0�09 0�07
P2O5 0�03 2�65 0�52 0�94 0�19 0�24
Rb 2�9 10�3 31�3 39�6 0�62 0�76
Sr 142 1239 1010 1138 155 327
Y 12�5 34�9 23�5 33�5 41�5 21�3
Zr 19 148 289 388 1980 899
Nb 3 52 67 110 414 174
Cs 0�034 0�083 0�318 0�758 0�03 0�01
Ba 28 528 429 620 11�5 30�9
Ta 0�18 2�93 3�93 7�42 34�2 16�6
Pb 1�64 1�35 2�34 3�69 1�28 2�25
Th 0�39 3�40 4�81 6�19 46�1 20�5
U 0�13 0�75 1�25 1�59 12�6 5�77
Sc 50 41 15 5 n.d. n.d.
V 255 448 309 174 17 19�1
Cr 156 38 21 1 n.d. n.d.
Co 42 57 31 16 n.d. n.d.
Ni 83 75 39 1 n.d. n.d.
Cu 13 42 180 2 n.d. n.d.
Zn 56 99 100 123 4�15 8�47
Ga 12 18 24 22 29 24
La 4 67 47 68 41�5 47�4
Ce 8 145 94 144 79�7 86�4
Pr 1�10 18�38 11�06 17�25 8�39 9�04
Nd 5�42 82�52 45�60 70�83 28�4 29�1
Sm 1�75 16�55 8�74 12�77 5�63 4�56
Eu 0�77 4�99 2�94 3�65 1 1�32
Gd 2�19 14�25 7�51 10�84 5�35 3�6
Tb 0�39 1�75 1�02 1�47 1 0�55
Dy 2�70 9�03 5�75 8�08 6�59 3�36
Ho 0�59 1�51 1�04 1�42 1�42 0�73
Er 1�62 3�42 2�56 3�49 4�69 2�41
Tm 0�24 0�38 0�35 0�47 0�85 0�44
Yb 1�59 2�18 2�01 2�57 6�81 3�55
Lu 0�23 0�28 0�29 0�37 1�1 0�57
Hf 0�72 4�94 6�87 8�60 52 23�3

*Data in italics are from Johansen et al. (2005).
n.d., not determined.
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consistent with relatively slow melting rates in a melt
column that penetrates the garnet stability zone. The

magnitude of the 226Ra excesses is typical of ocean is-

land basalts in general and requires low porosity in the

melting zone (e.g. Kokfelt et al., 2003; Bourdon et al.,

2005; Koornneef et al., 2012). More specifically, our U–

Th–Ra data for the historical Cumbre Vieja lavas closely

overlap those from other islands in the Canary Islands
in Fig. 9b. For Lanzarote in the eastern part of the archi-

pelago, Thomas et al. (1999) suggested 1–4% dynamic

partial melting of lherzolite in the presence of 5% re-

sidual garnet, close to the garnet–spinel transition. It

should be noted that these researchers also found no

requirement for recycled mafic lithologies to explain
their data. Given the overlap of published data from the

other Canary Islands with those for the historical

Cumbre Vieja lavas in Fig. 9b, a similar model is applic-
able to La Palma. It may be that mantle melting condi-

tions are relatively uniform across the Canary Islands,

unlike the situation inferred for a number of other ocean

island suites (e.g. Kokfelt et al., 2003; Bourdon et al.,

2005; Koornneef et al., 2012).

Fractional crystallization
The Cumbre Vieja lavas encompass a wide range in

major and trace element compositions and there are a

large proportion of intermediate rock compositions

indicating extended differentiation prior to eruption.

The coherency of the arrays in Figs 4 and 6 suggest
that, to a first approximation, the magmas all evolved

along a similar liquid line of descent from similar

Table 4: Sr, Nd and Pb isotope data for La Palma rocks*

Sample 87Sr/86Sr 143Nd/144Nd 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb

TLP 79-1 0�703118 0�512896 19�599 15�602 39�390
TLP 25-1 0�703099 0�512892 19�643 15�606 39�452
TLP 43-1 0�703108 0�512891 19�644 15�612 39�465
TLP 58-1 0�703107 0�512891 19�649 15�604 39�459
TLP 23-1 0�703088 0�512899 19�553 15�597 39�296
TLP 38-1 0�703117 0�512887 19�664 15�604 39�488
TLP 64-1 0�703102 0�512891 19�718 15�609 39�495
TLP 108-1 0�703099 0�512886 19�671 15�606 39�528
TLP 46-1 0�703129 0�512895 19�663 15�605 39�488
TLP 69-1 0�703082 0�512898 19�648 15�606 39�434
TLP 116-1 0�703127 0�512896 19�672 15�608 39�504
TLP 19-2 0�703125 0�512896 19�655 15�598 39�461
TLP 50-2 0�703082 0�512898 19�651 15�601 39�438
TLP 51-3 0�703076 0�512897 19�659 15�602 39�450
TLP 50-1 0�703095 0�512892 19�661 15�604 39�472
TLP 51-2 0�703099 0�512893 19�667 15�610 39�491

*Data in italics are from Johansen et al. (2005).

Table 5: U–Th–Ra isotope data for La Palma lavas

Sample Th U Ra (234U/238U) (238U/232Th) (230Th/232Th) (230Th/238U) (226Ra/230Th)0

(ppm) (ppm) (fg g–1)

TLP 79-1 6�49 1�90 1316 1�002 0�891 1�108 1�244 1�603
TLP 31-1 8�79 2�51 1464 1�008 0�868 1�085 1�250 1�426
KLA 1-5-08 6�00 1�73 986 1�027 0�872 1�105 1�267 1�452
KLA1-2-10 5�93 1�75 1070 1�007 0�884 1�124 1�285 1�401
KLA1-2-15 11�68 3�46 2100 1�016 0�898 1�113 1�239 1�443
KLA1-5-19 11�79 3�48 2132 1�005 0�896 1�099 1�227 1�505
KLA1-3-03* 8�20 1�43 687 1�002 0�531 1�139 2�151 0�647
TLP 111-1 8�53 2�36 2047 1�004 0�838 1�082 1�291 1�512
TLP 6-1 11�79 3�35 2349 1�008 0�864 1�087 1�259 n.d.
TLP 25-1 9�13 2�54 1592 1�008 0�845 1�079 1�276 1�530
TLP 43-1 8�74 2�37 1602 1�011 0�822 1�071 1�302 1�630
TLP 76-1 9�41 2�54 1760 1�013 0�820 1�077 1�313 1�614
TLP 58-1 8�44 2�41 1447 1�008 0�866 1�120 1�294 1�446
TLP 23-1 9�17 2�85 1156 1�002 0�945 1�120 1�184 n.d.
TLP 38-1 10�77 3�15 1606 0�999 0�888 1�149 1�294 1�168
TLP 64-1 8�86 2�92 1274 1�007 1�000 1�202 1�202 1�071
TLP 108-1 7�73 2�16 786 1�008 0�848 0�906 1�069 1�009
TLP 46-1 15�32 4�73 1249 1�009 0�936 1�130 1�207 1�225
TLP 69-1 13�62 4�61 1938 1�008 1�028 1�186 1�154 1�079
TLP 116-1 15�53 4�81 2319 1�004 0�939 1�154 1�229 1�149
TLP 19-2 20�44 6�64 3288 1�008 0�986 1�180 1�191 1�177

*Alkali gabbro nodule from the 1949 eruption.
n.d., not determined.
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parental magmas, which implies differentiation under

similar pressure–temperature conditions. There is little

variation in the radiogenic isotope data (Fig. 7) and no

correlation between radiogenic isotope compositions

and indices of differentiation such as SiO2 or MgO, sug-
gesting that a simple model of closed-system fractional

crystallization may be applicable. Additionally, the

curvilinear or inflected arrays for many elements are

consistent with changes in the mineralogy of the fractio-

nating assemblage and preclude models involving two

end-member mixing for the whole suite, even though
mixing of magmas has been inferred to be an important

process in the petrogenesis of Cumbre Vieja lavas

(Klügel et al., 2000) and especially for the more differen-

tiated types (see below).

Accordingly, we have used MELTS (Ghiorso & Sack,

1995; Gualda & Ghiorso, 2014) to calculate a liquid line of

decent for the composition of the most primitive basan-
ite (KLA 1-5-13) reported by Klügel et al. (2000). The

Table 6: MELTS mineral assemblages and partition coefficients used in the trace element modelling*

Phase: olivine clinopyroxene 1 clinopyroxene 2 plagioclase amphibole spinel titanite apatite

MgO interval
12–9 wt % 100 — — — — — — —
9–7 wt % 35 65 — — — — — —
7–5 wt % 25 61 — — — 11 2 1
5–3 wt % 17 — 64 4 12 2 1
3–1 wt % 22 — 55 6 3 12 1 1
Kd

V 0�1 1�53 5�60 n.d. 6�89 26 n.d. 1�48
Cr — 1279 10�8 n.d. 15�9 — n.d. n.d.
Co — 1�48 5�59 n.d. 8�97 — n.d. 0�084
Ni 7�46 10�0 0�932 n.d. 2�06 29 n.d. 0�088
Cu — 0�046 0�320 n.d. 0�135 — n.d. 0�167
Zn — 0�275 1�78 n.d. 2�83 — n.d. 0�072
Rb — 0�003 0�003 0�004 0�087 — 0�026 0�010
Sr — 0�123 0�499 2�33 1�47 — 0�745 4�78
Y — 0�741 2�57 0�003 2�48 — 63�9 19�0
Zr — 0�464 1�44 <1E – 3 0�755 — 7�39 0�042
Nb — 0�012 0�055 <1E – 3 1�28 — 29�8 0�010
Ba — 0�001 0�001 0�344 0�951 — 0�001 0�038
Ra — 5�7E – 05 4�0E – 05 0�065 0�076 — 0�001 0�038
La — 0�111 0�518 0�068 0�588 — 20�7 15�9
Ce — 0�200 0�912 0�043 0�977 — 38�2 18�5
Pr — 0�321 1�43 0�030 1�48 — 56�0 22�6
Nd — 0�460 2�08 0�026 2�14 — 78�5 27�4
Sm — 0�713 3�02 0�015 3�06 — 99�4 30�4
Eu — 0�766 3�14 0�192 3�19 — 94�0 28�4
Gd — 0�877 3�44 0�010 3�44 — 108 29�5
Tb — 0�877 3�30 0�006 3�24 — 97�6 25�5
Dy — 0�884 3�24 0�004 3�10 — 86�9 22�4
Ho — 0�855 3�01 0�003 2�82 — 75�3 19�9
Er — 0�797 2�65 0�002 2�40 — 58�4 16�6
Tm — 0�748 2�55 0�002 2�15 — 45�8 13�3
Yb — 0�679 2�52 0�002 1�91 — 36�2 10�1
Lu — 0�670 2�99 0�001 1�97 — 26�1 9�30
Hf — 1�03 2�54 <1E – 3 1�27 — 12�6 0�018
Ta — 0�054 0�213 <1E – 3 1�18 — 95�6 0�004
Pb — n.d. n.d. n.d. 0�224 — 0�048 0�500
Th — 0�015 0�027 <1E – 3 0�028 — 7�58 2�08
U — 0�007 0�015 <1E – 3 0�020 — 2�87 1�27

*Partition coefficients are as measured in the La Palma rocks (see Supplementary Data Electronic Appendix 3) with the exception
of those for V and Ni in olivine and spinel, which were taken from Rollinson (1993). Ra partition coefficients were either assumed to
be the same as for Ba (apatite and titanite) or in the case of the other phases calculated from the Ba partition coefficients following
the methods of Blundy & Wood (2003).

Fig. 3. Total alkalis–silica diagram for Cumbre Vieja volcanic
rocks and possible basement contaminants (crosses). Rock
classification after Le Bas et al. (1986). Shaded field is for data
from Hernandez-Pachero & Valls (1982), Hernandez-Pachero &
De La Nuez (1983), Elliott (1991) and Klügel et al. (2000).
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chosen conditions for the simulation were 400–700 MPa

pressure, based on evidence from Klügel et al. (2000,
2005), 0�3–0�6 wt % H2O, based on the ubiquitous pres-

ence of kaersutitic amphibole, and redox conditions

at the QFM buffer. Over the temperature interval

�1320–950�C, SiO2 in the liquid increases continuously

and the fractionating assemblage sequentially involves

olivine, olivineþ clinopyroxene, olivineþ clinopyrox-
eneþ spinelþ apatite and olivineþ clinopyroxeneþ
plagioclaseþ spinelþ apatite in varying proportions.

Amphibole and biotite were present only in the runs per-

formed with 0�6 wt % H2O and titanite was not present at
all. We emphasize that these model assemblages show

some differences from the actual petrography, highlight-

ing issues with the ability of MELTS to predict saturation

of some phases.

The results of the MELTS modelling are superim-

posed on the major element variation diagrams in
Fig. 4 and, with the above caveats in mind, the MELTS

model clearly provides a good first approximation of

Fig. 4. Major element variation diagrams showing the coherency of the Cumbre Vieja volcanic rocks with liquid lines of descent cal-
culated using MELTS (Ghiorso & Sack, 1995) superimposed. Conditions of the MELTS simulation were 400–700 MPa pressure and
0�3–0�6 wt % H2O at the QFM buffer. The fine straight line on the CaO–MgO plot is the peridotite–pyroxenite melt dividing line of
Herzberg & Asimow (2008).
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the major element data across the compositional

range from basanite to phonotephrite. We note that

Al2O3 begins to decrease below MgO¼ 2 wt % in the

0�6 wt % H2O models and cannot replicate the phono-

lite compositions as well as the runs performed with
0�3 wt % H2O. Similarly, the lower pressure runs argu-

ably provide better simulations of the data for CaO (al-

though perhaps not P2O5). This must be a

compositional effect, as higher total pressures and

water contents will normally delay saturation of

plagioclase and favour precipitation of amphibole.

Nevertheless, the best MELTS simulation of the evolu-
tion from basanite to phonolite for the Cumbre Vieja

lavas is at 400 MPa and 0�3 wt % H2O, including replica-

tion of the variations in N2O and K2O (not shown). This

is consistent with the observation that clinopyroxene

is cotectic with olivine rather than plagioclase in the

basanites and this occurs only at pressures �400 MPa
(e.g. Fisk et al., 1988). For the preferred model, the li-

quid fraction (F) decreases by 85% over the tempera-

ture interval 1320–990�C. These results are entirely

consistent with the suggestions of Klügel et al. (2005)

that the magmas largely differentiated in the upper

mantle followed by stalling at shallower levels for

short durations, where the evolution of the intermedi-
ate magmas to produce phonolites occurs.

To further appraise the closed-system fractionation

model, we undertook Rayleigh fractionation modeling of

the trace element data using the composition of the

most primitive basanite, the mineral modes derived

from the preferred MELTS model in 2 wt % MgO incre-
ments and our measured partition coefficients as de-

tailed in Table 6. The latter were supplemented by data

for olivine and spinel from Rollinson (1993) and we used

the methods of Blundy & Wood (2003) to calculate the

Ra partition coefficients (see Table 6). We included some

amphibole and titanite in the final stages of crystalliza-

tion to remain consistent with the petrography and also
performed a second set of calculations in which we used

the mineral and melt proportions Johansen et al. (2005)

derived from least-squares models for the Cumbre Vieja

lavas. As illustrated in Figs 6 and 8, the results from the

two models are very similar for most elements and pro-

vide a good simulation of the data over the compos-

itional range from basanite to phonotephrite–
tephriphonolite (12–5 wt % MgO). However, the models

fail in a number of respects at lower MgO and higher

SiO2 (i.e. for the evolution from tephriphonolite to

phonolite). Most notably, the observed increases in Ba,

Pb, Th and U concentrations and the associated decrease

in Sr concentration during the late stages of differenti-
ation are not reproduced. Similarly, the inflected trend

for Yb is not replicated at all.

Incompatible element behavior during the
evolution of the phonolitic magmas
Carbonatites are found on some of the Canary Islands
(Hoernle et al. 2002) and one means to produce phono-

lite magma involves separation of an immiscible car-

bonatite liquid, which can lead to significant chemical

fractionation (e.g. Freestone & Hamilton, 1980;

Kogarko, 1997). However, available partitioning data

(Jones et al., 1995) indicate that this will produce 226Ra
deficits in the phonolite magma that are not observed

in our samples. Moreover, the phonolites form a
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Fig. 5. Primitive mantle-normalized multi-element diagram (Hofmann, 1988) for averages of the compositional groups, subdivided
into prehistoric and historical eruptions.
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Fig. 6. Plots of trace elements, chosen for their varying compatibility, vs MgO. Model curves are for Rayleigh fractionation of the
most primitive basanite using the partition coefficients listed in Table 6. Continuous curves used the mineral modes and melt pro-
portions from the preferred MELTS model reported in Table 6. The dashed curves used the same partition coefficients but mineral
modes and melt proportions based on least-squares modelling by Johansen et al. (2005). The composition resulting from addition
of 17% partial melt of a phonotephrite to the basanite glass in Table 7 is indicated by the star, whereas addition of 17% partial melt
of a cumulate from the phonotephrite to the basanite glass is indicated by VC . (See text for discussion.)
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compositional continuum with the other lavas (Figs 4

and 6) that is more consistent with an origin through
differentiation and/or late stage mixing.

Over several decades, a number of canonical incom-

patible trace element ratios have been identified that

appear to be largely invariant within oceanic basalts.

One of the striking observations from the Cumbre

Vieja data is that whereas some of these ratios, such

as La/Nb, K/Rb, Ba/Th and Ba/Nb, are relatively invari-

ant across the differentiation sequence, others such as

Nb/U, Ce/Pb, Nd/Pb, Nb/Ta, Zr/Hf and La/Ce show

marked variation below �6 wt % MgO. As an example,
the contrasting behavior of La/Nb and Ce/Pb is illus-

trated in Fig. 10a and b. Neither olivine, pyroxenes or

plagioclase can significantly affect these ratios, but it is

possible that the departure of many ratios from their ca-

nonical values reflects amphibole and late-stage acces-

sory phase fractionation, as these are common phases

in both lavas and cumulate nodules on La Palma. We
choose to illustrate this largely based on discussion of

the controls on Nb/U (Fig. 10c–f) because a feature that

Lundstrom et al. (2003) noted in their compilation study

of lavas from the Canary Islands is that Nb/U ratios vary

well beyond the canonical value of 47 6 10 that is char-

acteristic of both mid-ocean ridge and ocean island bas-
alts (Hofmann et al., 1986).

As shown in Fig. 10c, below about 5 wt % MgO, Nb/U

ratios show a decrease from �50 to �10 in the phono-

lites. Amphibole and titanite are some of the few min-

erals that have high Nb/U (see Table 6) and can,

therefore, produce decreases in Nb/U ratios via frac-
tional crystallization. Recently, Davidson et al. (2013)

have highlighted the utility of Dy/Dy*, as a measure of

the curvature of REE patterns, to identify the role of

amphibole fractionation; however, in alkaline magmas

this ratio can also be decreased by fractionation of titan-

ite (Wörner et al., 1983; Olin & Wolff, 2012). As shown in

Fig. 10d, the decreases in Nb/U are strongly correlated
with decreasing Dy/Dy* in the Cumbre Vieja lavas, pro-

viding good evidence for fractional crystallization of

amphibole. However, although there is a positive correl-

ation between Nb/U and Dy/Dy*, both of the numerical

models illustrated in Fig. 10d are incapable of replicat-

ing the full extent of the Cumbre Vieja array. The same
is true for the decrease in Ce/Pb below 5 wt % MgO,

even though both apatite and titanite were included in

the models (Fig. 10b, Table 6).

Mixing with partial melts of plutonic rocks
Interaction with crustal rocks provides another means
to explain the departure of the evolved lavas from the

modelled liquid line of descent. However, the lack of

variation in the radiogenic isotopes requires that this

involve earlier equivalents of the lavas rather than any

exotic component such as continental crust or sedi-

ment, consistent with the tectonic setting. The ana-

lysed plutonic rocks span a significant range in Nb/U
ratios and these are lowest at low MgO, supporting a

potential role for such materials in the generation of

the evolved Cumbre Vieja lavas (Fig. 10c). The lever-

age of residual clinopyroxene and accessory phases

can be significant during relatively small degrees of

partial melting, and in the following discussion we ex-
plore two scenarios for generating the trace element

trends at <5 wt % MgO: (1) partial melting of the

Fig. 7. Variation of (a) 143Nd/144Nd vs 87Sr/86Sr, (b) 207Pb/204Pb
vs 206Pb/204Pb and (c) 208Pb/204Pb vs 206Pb/204Pb for the Cumbre
Vieja volcanic rocks. Grey fields are literate data from the
Canary Islands (Hoernle et al., 1991; Sigmarsson et al., 1992;
Thirlwall et al., 1997; Thomas et al., 1999; Praegel & Holm,
2006). MORB field on (a) is from Yu et al. (1997) and the arrow
on (b) points to HIMU. Northern Hemisphere Reference Line
(NHRL) from Hart (1984).
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Fig. 9. (a) Variation of (230Th/238U) vs SiO2 (wt %). (b) Plot of
(226Ra/230Th) vs (230Th/238U). The inclined arrow in (b) shows
the magnitude and direction of the shift owing to fractional
crystallization involving accessory phases based on the mod-
els in Fig. 6; decay during ageing is indicated by the downward
vertical arrow. Grey field on (b) is literate data from the Canary
Island from Lundstrom et al. (2003) and the horizontal dashed
line indicates secular equilibrium. The black hexagon in (b) is
the same dynamic melt as shown in Fig. 8c assuming
DRa¼8�10–7 based on Blundy & Wood (2003). The compos-
ition resulting from addition of 17% partial melt of a phono-
tephrite to the basanite glass in Table 7 is indicated by the star,
whereas addition of 17% partial melt of a cumulate from the
phonotephrite to the basanite glass is indicated by VC . Mixing
vectors are indicated by the arrowed dashed curves.

Fig. 8. (a, b) Variation of Th and U vs MgO along with curves
for the same models as shown in Fig. 6. It should be noted that
sample TLP 27-1 with 52 ppm Th and 26 ppm U plots outside
the scale of these diagrams. (c) U–Th equiline diagram for his-
torical [including published data from Johansen et al. (2005)]
and prehistoric eruptions of Cumbre Vieja, La Palma (dashed
lines indicate 10, 20 and 30% 230Th excess). It should be noted
that one prehistoric sample in (c) has 226Ra–230Th within error
of secular equilibrium and so it is likely that its low
(230Th/232Th) ratio reflects decay since eruption (see also
Fig. 10b). Grey field on (c) is literate data from the Canary
Islands from Lundstrom et al. (2003). The black hexagon repre-
sents a dynamic peridotite melt calculated using the formula-
tion of Williams & Gill (1989) and the following parameters:
extent of melting 4%, melt column length 150 km, upwelling
rate 3 cm a�1, solid density 3300 kg m�3, melt density 2800 kg
m�3, source contains 3�4 ppb U, 13�7 ppb Th, 57% olivine, 23%
orthopyroxene, 15% clinopyroxene and 5% garnet such that

DU¼3�96�10–3 and DTh¼1�76�10–3 based on the 3 GPa parti-
tion coefficients of Blundy & Wood (2003). The composition re-
sulting from addition of 17% partial melt of a phonotephrite to
the basanite glass in Table 7 is indicated by the star, whereas
addition of 17% partial melt of a cumulate from the phonoteph-
rite to the basanite glass is indicated by VC .
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intrusive equivalents of the more primitive phonoteph-

rites (i.e. syenite); (2) partial melting of cumulates

formed during the generation of the more primitive

phonotephrites (note that this latter component needs

to be a melt of a solid cumulate rather than melt pre-
sent in a crustal mush, as the latter would simply lie on

the modeled liquid lines of descent).

Table 7 lists the composition of a phonotephrite glass

(analysed in basanite Pos270 164-7) provided in SD

Electronic Appendix 3. As detailed in Table 7, we have

calculated the composition of a 10% partial melt of this
composition and also a 10% melt of an inferred cumulate

from this glass composition, using the mineral modes

listed. On the basis of solubility data from Hellman &

Green (1979) and Watson (1979) it was assumed that

titanite, but not apatite, would be a residual phase, along

with olivine, pyroxene, plagioclase and amphibole. We

did not include spinel in the calculations, but the low par-
tition coefficients for the elements of interest mean that

this will not alter the outcomes of the modeling. As can

be seen in Table 7, the Ce/Pb, Nb/U and Dy/Dy* ratios of

the partial melt of the model syenite are significantly

lower than those of the glass, whereas La/Nb remains

relatively unchanged. In contrast, the Ce/Pb and Nb/U
ratios of the model cumulate and a partial re-melt thereof

are significantly higher than those of the glass. As shown

Fig. 10. Variation of (a) La/Nb vs MgO, (b) Ce/Pb vs MgO, (c) Nb/U vs MgO, (d) Dy/Dy* vs Nb/U used as an indicator of amphibole
fractionation (Davidson et al., 2013), (e) (230Th/238U) and (f) (226Ra/230Th) vs Nb/U. It should be noted that the prehistoric lavas have
undergone significant decay of 226Ra in (f), and one of these samples in (e), which has (226Ra/230Th)¼1, has probably experienced
230Th decay. The curves are derived from the same models as depicted in Fig. 6 and discussed in the text. For (e) and (f) the parental
magma with (230Th/232Th)¼1�1 and (226Ra/230Th)¼1�68 comes from the model described in the caption to Figs 8 and 9. The com-
position resulting from addition of 17% partial melt of a phonotephrite to the basanite glass in Table 7 is indicated by the star,
whereas addition of 17% partial melt of a cumulate from the phonotephrite to the basanite glass is indicated by VC .
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in Figs 6 and 8–10, mixing of �17% of the partial melt of

the model syenite into an newly intruding phonotephrite
provides a reasonable first-order approximation of the de-

parture of the more evolved lavas from the modeled liquid

line of descent. Detailed appraisal of the diagrams indi-

cates that the relative contributions of the two components

(and/or proportions of residual phases) must be variable

from one lava to another, but that is hardly surprising.
More importantly, mixing with the model cumulate re-

melt would lead to lower Ba, Pb, Th and U concentrations

and higher Ce/Pb and Nb/U than observed and so cannot

explain the observed trends. In summary, we conclude

that closed-system fractional crystallization from 12–5 wt

% MgO followed by differentiation combined with mixing

with partial melts of earlier formed syenites in the pres-
ence of residual amphibole and titanite can explain the

general trends observed in the Cumbre Vieja lavas.

We now return to the U-series data to obtain con-

straints on the timescales involved.

U-series isotope behaviour and differentiation
timescales
A striking observation in Fig. 10e is that the decreases
in Nb/U are correlated with decreasing (230Th/238U). One

possible explanation is that differentiation was

accompanied by assimilation of crustal materials that

had low Nb/U and were also sufficiently old to be in
230Th–238U secular equilibrium. However, the lavas

form a broadly horizontal array on the equiline diagram

(Fig. 8c), requiring that both end-members in any mix-
ing scenario have the same (230Th/232Th) ratios, as

decay would result in significantly lower (230Th/232Th).

This requires that the syenites implicated in the model

described above would have to be less than �10 kyr old

such that their (230Th/232Th) ratios remained essentially

unchanged from those of newly intruding magmas.

Making this assumption, Fig. 8c shows the calculated
U-series composition of the melts from Table 7. Once

again, it is clear that the cumulate re-melt cannot repli-

cate the range of the data when mixed with the inferred

primary melt whereas mixing with the syenite melt

can. The same conclusions hold for the relationships in

Figs 9a and 10e. It should be noted that because Th is
more compatible than U in the fractionation assem-

blage (Table 6) crystal fractionation will also drive com-

positions to higher (238U/232Th) but, again, this must

occur on a timescale less than 10 kyr to maintain the

broadly horizontal array in Fig. 8c. This is strongly sup-

ported by the data for the alkali gabbro cumulate, which
has a very low (238U/232Th) ratio of 0�53 yet a

(230Th/232Th) ratio of 1�1, similar to the majority of the

lavas (Table 5).

A further and equally important feature of the data is

that although the fractionation followed by mixing

model can adequately explain the correlated decreases

in Nb/U (and Ce/Pb and Dy/Dy*), there is little or no
associated change in (226Ra/230Th) within the historical

lavas across the whole range in Nb/U ratios (Fig. 10f).

This highlights the importance of residual titanite, in

which Th is significantly more compatible than either

Ra or U (Table 6). The result is that the syenite melts are

displaced to much higher (238U/232Th) and are also
predicted to have considerable 226Ra excesses (see

Table 7). Thus, addition of these melts will pull the

evolved lavas towards the equiline in Fig. 8c, yet have a

much more muted affect on their (226Ra/230Th) ratios

and, at most, cause a 10–20% decrease in the 226Ra

excesses (see Figs 9b and 10f). Small but variable

amounts of decay or accessory phase fractionation
combined with variations in the disequilibria in the in-

coming lavas can readily explain the remaining vari-

ation in the observed U-series disequilibria. The

important corollary is that the combined timescale for

crystal fractionation and mixing cannot have been be

much longer than the half-life of 226Ra (1600 years) and
this is entirely consistent with the 1–2 kyr internal iso-

chrons reported by Johansen et al. (2005).

The timescales we infer for small-volume phonolite

generation on La Palma are in good agreement with the

findings of Lundstrom et al. (2003), Johansen et al.

(2005) and Reagan et al. (2008). The timescales are also

broadly consistent with the observations of Blake &
Rogers (2005), with the implication that the power out-

put of many small to moderate-sized magmatic systems

Table 7: Crustal melting models (see text for explanation)*

ppm Pos270
164-7

10% melt
of rock

56%
cumulate

10% melt
of cumulate

basanite
glass

Ni 5 3 6 4
V 102 28 175 48
Rb 52 471 0�8 7
Ba 686 3442 106 532
Ra* 1272 11207 296 2611
Th 10�4 41�1 2�4 9�6
U 3�01 18�67 0�29 1�81
Nb 110 151 86 118
La 96 119 82 101
Ce 178 131 217 159
Pb 5�8 52�6 0�10 0�94
Sr 1241 1504 1072 1300
Nd 65 23 106 38
Sm 10�8 2�9 18�6 4�9
Zr 307 279 328 298
Hf 5�57 3�02 7�92 4�29
Gd 7�44 1�78 12�97 3�10
Tb 1�03 0�26 1�78 0�46
Dy 5�61 1�53 9�63 2�62
Y 25�4 8�94 41�64 14�65
Yb 2�31 1�01 3�57 1�56
Lu 0�33 0�14 0�52 0�22
La/Nb 0�87 0�79 0�95 0�86
Ce/Pb 30 2�5 2089 170
Nb/U 37 8 293 65
Dy/Dy* 0�57 0�26 0�76 0�35
(238U/232Th) 0�88 1�38 0�37 0�57
(230Th/232Th) 1�10 1�10 1�10 1�10
(226Ra/230Th)* 1�00 2�23 1�00 2�23

*All models assumed a residual assemblage composed of 12%
olivine, 64% clinopyroxene, 17% plagioclase, 5% amphibole
and 2% titanite, and used the partition coefficients from
Table 6. Ra concentrations were calculated assuming secular
equilibrium with (230Th/232Th)¼1�1.
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is consistent with their location in the shallow to mid-

crust (�13 km depth in the case of the formation of the

evolved La Palma lavas), where cooling and crystalliza-

tion are likely to be relatively rapid (Dosseto et al., 2008;

Turner et al., 2010). Phonolite evolution in volcanic sys-
tems such as Laacher See would appear to involve lon-

ger timescales of tens of thousand years that are

consistent with their large (�6�3 km3) volume (Bourdon

et al., 1994; Schmitt et al., 2010). Overall, the combined

observations fit into a model of repeated magma injec-

tion and rapid extraction of different melt batches be-

neath the Cumbre Vieja rift system (Klügel et al., 2000,
2005).

CONCLUSIONS

A study of the geochemistry of historical and prehistoric

Cumbre Vieja lavas that span a wide range of compos-

itions from basanite to phonolite indicates an evolution-

ary process initially involving closed-system fractional

crystallization of magmas produced by small-degree

partial melting of garnet lherzolite followed by mixing
with melts of young syenites (Klügel et al., 2000). More

complex models invoking interaction with amphibole-

bearing lithospheric mantle, assimilation of old syenitic

crust or separation of an immiscible carbonatite liquid

from the phonolite magmas do not seem required by

the data and radiogenic isotope ratios show little vari-
ation. Incompatible trace element data indicate an im-

portant role for titanite during the later stages of

differentiation, which produced marked changes in

trace element ratios, such as Ce/Pb and Nb/U, that are

normally considered invariant in oceanic basalts (e.g.

Hofmann et al., 1986). Thus, paradoxically, MgO, Nb/U
and (230Th/238U) all decrease together whereas

(226Ra/230Th) remains unaffected. Nevertheless, the U-

series isotope data indicate that differentiation occurred

over a few hundred years to 2000 years and this is con-

sistent with evidence for rapid magma ascent (Klügel

et al., 2000) and the results of other recent U-series iso-

tope studies of basanite to phonolite evolution in ocean
islands (e.g. Johansen et al., 2005; Reagan et al., 2008).

The implication is that such lavas evolve from relatively

small magma batches that differentiate in the mantle

and are then repeatedly emplaced into the mid- to shal-

low crust of the Cumbre Vieja rift system, where cooling

and crystallization are likely to be relatively rapid. The
resultant magmas are then rapidly extracted to be

erupted at the surface (e.g. Klügel et al., 2000).
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APPENDIX: DETERMINATION OF PARTITION
COEFFICIENTS

For the determination of partition coefficients we ana-

lysed the rims of euhedral phenocrysts and the matrix
(glass or groundmass) of suitable Cumbre Vieja samples

for their trace element concentrations. The analyses

were carried out on thin sections by laser ablation in-

ductively coupled plasma mass spectrometry using a

NewWave UP193ss solid-state laser coupled to a

Thermo Element mass spectrometer at the Department
of Geosciences, University of Bremen. Typical analytical

conditions included a laser pulse rate of 5 Hz, irradiance

of�1 GW cm–2, spot size between 35 and 100mm, helium

(�0�8 l min–1) as sample gas, argon (�0�8 l min–1) as

make-up gas, and a plasma power of 1200 W.

Groundmass was analysed along traverses at a speed of

5mm s–1. The ThO/Th ratio determined on NIST612 glass

was �0�1%. All isotopes were analysed at low resolution

with five samples in a 20% mass window and a total

dwell time of 25 ms per isotope; blanks were measured
during 20 s prior to ablation. Great care was taken in

scrutinizing the data to avoid mineral or melt inclusions.

After every 5–12 data points either NIST610 or NIST612

glass was analysed as an external calibration standard.

For data quantification Cetac GeoPro
TM

software was

used with Ca as internal standard. Analytical accuracy
and precision were monitored by analyses of USGS

glasses BCR2G and BHVO2G along with the sam-

ples; both are better than 10% for most elements. The

full set of melt and mineral compositions and calculated

partition coefficients are given in SD Electronic

Appendix 3.
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