248 research outputs found

    Diagnostic Prediction Using Discomfort Drawings with IBTM

    Get PDF
    In this paper, we explore the possibility to apply machine learning to make diagnostic predictions using discomfort drawings. A discomfort drawing is an intuitive way for patients to express discomfort and pain related symptoms. These drawings have proven to be an effective method to collect patient data and make diagnostic decisions in real-life practice. A dataset from real-world patient cases is collected for which medical experts provide diagnostic labels. Next, we use a factorized multimodal topic model, Inter-Battery Topic Model (IBTM), to train a system that can make diagnostic predictions given an unseen discomfort drawing. The number of output diagnostic labels is determined by using mean-shift clustering on the discomfort drawing. Experimental results show reasonable predictions of diagnostic labels given an unseen discomfort drawing. Additionally, we generate synthetic discomfort drawings with IBTM given a diagnostic label, which results in typical cases of symptoms. The positive result indicates a significant potential of machine learning to be used for parts of the pain diagnostic process and to be a decision support system for physicians and other health care personnel.Comment: Presented at 2016 Machine Learning and Healthcare Conference (MLHC 2016), Los Angeles, C

    Workers' health and productivity under occupational heat strain:a systematic review and meta-analysis

    Get PDF
    This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/Background Occupational heat strain (ie, the effect of environmental heat stress on the body) directly threatens workers’ ability to live healthy and productive lives. We estimated the effects of occupational heat strain on workers’ health and productivity outcomes. Methods Following PRISMA guidelines for this systematic review and meta-analysis, we searched PubMed and Embase from database inception to Feb 5, 2018, for relevant studies in any labour environment and at any level of occupational heat strain. No restrictions on language, workers’ health status, or study design were applied. Occupational heat strain was defined using international health and safety guidelines and standards. We excluded studies that calculated effects using simulations or statistical models instead of actual measurements, and any grey literature. Risk of bias, data extraction, and sensitivity analysis were performed by two independent investigators. Six random-effects meta-analyses estimated the prevalence of occupational heat strain, kidney disease or acute kidney injury, productivity loss, core temperature, change in urine specific gravity, and odds of occupational heat strain occurring during or at the end of a work shift in heat stress conditions. The review protocol is available on PROSPERO, registration number CRD42017083271. Findings Of 958 reports identified through our systematic search, 111 studies done in 30 countries, including 447 million workers from more than 40 different occupations, were eligible for analysis. Our meta-analyses showed that individuals working a single work shift under heat stress (defined as wet-bulb globe temperature beyond 22·0 or 24·8°C depending on work intensity) were 4·01 times (95% CI 2·45–6·58; nine studies with 11 582 workers) more likely to experience occupational heat strain than an individual working in thermoneutral conditions, while their core temperature was increased by 0·7°C (0·4–1·0; 17 studies with 1090 workers) and their urine specific gravity was increased by 14·5% (0·0031, 0·0014–0·0048; 14 studies with 691 workers). During or at the end of a work shift under heat stress, 35% (31–39; 33 studies with 13088 workers) of workers experienced occupational heat strain, while 30% (21–39; 11 studies with 8076 workers) reported productivity losses. Finally, 15% (11–19; ten studies with 21721 workers) of individuals who typically or frequently worked under heat stress (minimum of 6 h per day, 5 days per week, for 2 months of the year) experienced kidney disease or acute kidney injury. Overall, this analysis include a variety of populations, exposures, and occupations to comply with a wider adoption of evidence synthesis, but resulted in large heterogeneity in our meta-analyses. Grading of Recommendations, Assessment, Development and Evaluation analysis revealed moderate confidence for most results and very low confidence in two cases (average core temperature and change in urine specific gravity) due to studies being funded by industry. Interpretation Occupational heat strain has important health and productivity outcomes and should be recognised as a public health problem. Concerted international action is needed to mitigate its effects in light of climate change and the anticipated rise in heat stress

    The association between overall health, psychological distress, and occupational heat stress among a large national cohort of 40,913 Thai workers

    Get PDF
    Background: Occupational heat stress is a well-known problem, particularly in tropical countries, affecting workers, health and well-being. There are very few recent studies that have reported on the effect of heat stress on mental health, or overall health in workers, although socioeconomic development and rapid urbanization in tropical developing countries like Thailand create working conditions in which heat stress is likely. Objective: This study is aimed at identifying the relationship between self-reported heat stress and psychological distress, and overall health status in Thai workers. Results: 18% of our large national cohort (>40,000 subjects) often works under heat stress conditions and males are exposed to heat stress more often than females. Furthermore, working under heat stress conditions is associated with both worse overall health and psychological distress (adjusted odds ratios ranging from 1.49 to 1.84). Conclusions: This association between occupational heat stress and worse health needs more public health attention and further development on occupational health interventions as climate change increases Thailand's temperatures

    Workers' health and productivity under occupational heat strain: a systematic review and meta-analysis

    Get PDF
    Background Occupational heat strain (ie, the effect of environmental heat stress on the body) directly threatens workers’ ability to live healthy and productive lives. We estimated the effects of occupational heat strain on workers’ health and productivity outcomes. Methods Following PRISMA guidelines for this systematic review and meta-analysis, we searched PubMed and Embase from database inception to Feb 5, 2018, for relevant studies in any labour environment and at any level of occupational heat strain. No restrictions on language, workers’ health status, or study design were applied. Occupational heat strain was defined using international health and safety guidelines and standards. We excluded studies that calculated effects using simulations or statistical models instead of actual measurements, and any grey literature. Risk of bias, data extraction, and sensitivity analysis were performed by two independent investigators. Six random-effects meta-analyses estimated the prevalence of occupational heat strain, kidney disease or acute kidney injury, productivity loss, core temperature, change in urine specific gravity, and odds of occupational heat strain occurring during or at the end of a work shift in heat stress conditions. The review protocol is available on PROSPERO, registration number CRD42017083271. Findings Of 958 reports identified through our systematic search, 111 studies done in 30 countries, including 447 million workers from more than 40 different occupations, were eligible for analysis. Our meta-analyses showed that individuals working a single work shift under heat stress (defined as wet-bulb globe temperature beyond 22·0 or 24·8°C depending on work intensity) were 4·01 times (95% CI 2·45–6·58; nine studies with 11 582 workers) more likely to experience occupational heat strain than an individual working in thermoneutral conditions, while their core temperature was increased by 0·7°C (0·4–1·0; 17 studies with 1090 workers) and their urine specific gravity was increased by 14·5% (0·0031, 0·0014–0·0048; 14 studies with 691 workers). During or at the end of a work shift under heat stress, 35% (31–39; 33 studies with 13088 workers) of workers experienced occupational heat strain, while 30% (21–39; 11 studies with 8076 workers) reported productivity losses. Finally, 15% (11–19; ten studies with 21721 workers) of individuals who typically or frequently worked under heat stress (minimum of 6 h per day, 5 days per week, for 2 months of the year) experienced kidney disease or acute kidney injury. Overall, this analysis include a variety of populations, exposures, and occupations to comply with a wider adoption of evidence synthesis, but resulted in large heterogeneity in our meta-analyses. Grading of Recommendations, Assessment, Development and Evaluation analysis revealed moderate confidence for most results and very low confidence in two cases (average core temperature and change in urine specific gravity) due to studies being funded by industry. Interpretation Occupational heat strain has important health and productivity outcomes and should be recognised as a public health problem. Concerted international action is needed to mitigate its effects in light of climate change and the anticipated rise in heat stress

    Escalating environmental summer heat exposure - a future threat for the European workforce

    Get PDF
    Heat exposure constitutes a major threat for European workers, with significant impacts on the workers' health and productivity. Climate projections over the next decades show a continuous and accelerated warming over Europe together with longer, more intense and more frequent heatwaves on regional and local scales. In this work, we assess the increased risk in future occupational heat stress levels using the wet bulb globe temperature (WBGT), an index adopted by the International Standards Organization as regulatory index to measure the heat exposure of working people. Our results show that, in large parts of Europe, future heat exposure will indeed exceed critical levels for physically active humans far more often than in today?s climate, and labour productivity might be largely reduced in southern Europe. European industries should adapt to the projected changes to prevent major consequences for the workers? health and to preserve economic productivity.Financial support for this work is provided by the HEAT-SHIELD Project (European Commission HORIZON 2020, research and innovation programme under the grant agreement 668786). The authors wish to thank the Swiss National Supercomputing Centre (CSCS) for providing the technical infrastructure

    Soil control on runoff response to climate change in regional climate model simulations

    Get PDF
    Simulations with seven regional climate models driven by a common control climate simulation of a GCM carried out for Europe in the context of the (European Union) EU-funded Prediction of Regional scenarios and Uncertainties for Defining European Climate change risks and Effects (PRUDENCE) project were analyzed with respect to land surface hydrology in the Rhine basin. In particular, the annual cycle of the terrestrial water storage was compared to analyses based on the 40-yr ECMWF Re-Analysis (ERA-40) atmospheric convergence and observed Rhine discharge data. In addition, an analysis was made of the partitioning of convergence anomalies over anomalies in runoff and storage. This analysis revealed that most models underestimate the size of the water storage and consequently overestimated the response of runoff to anomalies in net convergence. The partitioning of these anomalies over runoff and storage was indicative for the response of the simulated runoff to a projected climate change consistent with the greenhouse gas A2 Synthesis Report on Emission Scenarios (SRES). In particular, the annual cycle of runoff is affected largely by the terrestrial storage reservoir. Larger storage capacity leads to smaller changes in both wintertime and summertime monthly mean runoff. The sustained summertime evaporation resulting from larger storage reservoirs may have a noticeable impact on the summertime surface temperature projections

    Magnetic resonance imaging findings in bipartite medial cuneiform – a potential pitfall in diagnosis of midfoot injuries: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The bipartite medial cuneiform is an uncommon developmental osseous variant in the midfoot. To our knowledge, Magnetic Resonance Imaging (MRI) characteristics of a non-symptomatic bipartite medial cuneiform have not been described in the orthopaedic literature. It is important for orthopaedic foot and ankle surgeons, musculoskeletal radiologists, and for podiatrists to identify this osseous variant as it may be mistakenly diagnosed as a fracture or not recognized as a source of non-traumatic or traumatic foot pain, which may sometimes even require surgical treatment.</p> <p>Case presentations</p> <p>In this report, we describe the characteristics of three cases of bipartite medial cuneiform on Magnetic Resonance Imaging and contrast its appearance to that of a medial cuneiform fracture.</p> <p>Conclusion</p> <p>A bipartite medial cuneiform is a rare developmental anomaly of the midfoot and may be the source of midfoot pain. Knowledge about its characteristic appearance on magnetic resonance imaging is important because it is a potential pitfall in diagnosis of midfoot injuries.</p

    Use of expert elicitation to assign weights to climate and hydrological models in climate impact studies

    Get PDF
    Various methods are available for assessing uncertainties in climate impact studies. Among such methods, model weighting by expert elicitation is a practical way to provide a weighted ensemble of models for specific real-world impacts. The aim is to decrease the influence of improbable models in the results and easing the decision-making process. In this study both climate and hydrological models are analysed, and the result of a research experiment is presented using model weighting with the participation of six climate model experts and six hydrological model experts. For the experiment, seven climate models are a priori selected from a larger EURO-CORDEX (Coordinated Regional Downscaling Experiment - European Domain) ensemble of climate models, and three different hydrological models are chosen for each of the three European river basins. The model weighting is based on qualitative evaluation by the experts for each of the selected models based on a training material that describes the overall model structure and literature about climate models and the performance of hydrological models for the present period. The expert elicitation process follows a three-stage approach, with two individual rounds of elicitation of probabilities and a final group consensus, where the experts are separated into two different community groups: a climate and a hydrological modeller group. The dialogue reveals that under the conditions of the study, most climate modellers prefer the equal weighting of ensemble members, whereas hydrological-impact modellers in general are more open for assigning weights to different models in a multi-model ensemble, based on model performance and model structure. Climate experts are more open to exclude models, if obviously flawed, than to put weights on selected models in a relatively small ensemble. The study shows that expert elicitation can be an efficient way to assign weights to different hydrological models and thereby reduce the uncertainty in climate impact. However, for the climate model ensemble, comprising seven models, the elicitation in the format of this study could only re-establish a uniform weight between climate models
    corecore