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Workers’ health and productivity under occupational heat 
strain: a systematic review and meta-analysis
Andreas D Flouris, Petros C Dinas, Leonidas G Ioannou, Lars Nybo, George Havenith, Glen P Kenny, Tord Kjellstrom

Summary
Background Occupational heat strain (ie, the effect of environmental heat stress on the body) directly threatens 
workers’ ability to live healthy and productive lives. We estimated the effects of occupational heat strain on workers’ 
health and productivity outcomes.

Methods Following PRISMA guidelines for this systematic review and meta-analysis, we searched PubMed and 
Embase from database inception to Feb 5, 2018, for relevant studies in any labour environment and at any level of 
occupational heat strain. No restrictions on language, workers’ health status, or study design were applied. 
Occupational heat strain was defined using international health and safety guidelines and standards. We excluded 
studies that calculated effects using simulations or statistical models instead of actual measurements, and any grey 
literature. Risk of bias, data extraction, and sensitivity analysis were performed by two independent investigators. Six 
random-effects meta-analyses estimated the prevalence of occupational heat strain, kidney disease or acute kidney 
injury, productivity loss, core temperature, change in urine specific gravity, and odds of occupational heat strain 
occurring during or at the end of a work shift in heat stress conditions. The review protocol is available on PROSPERO, 
registration number CRD42017083271.

Findings Of 958 reports identified through our systematic search, 111 studies done in 30 countries, including 
447 million workers from more than 40 different occupations, were eligible for analysis. Our meta-analyses showed 
that individuals working a single work shift under heat stress (defined as wet-bulb globe temperature beyond 22·0 or 
24·8°C depending on work intensity) were 4·01 times (95% CI 2·45–6·58; nine studies with 11 582 workers) more 
likely to experience occupational heat strain than an individual working in thermoneutral conditions, while their core 
temperature was increased by 0·7°C (0·4–1·0; 17 studies with 1090 workers) and their urine specific gravity was 
increased by 14·5% (0·0031, 0·0014–0·0048; 14 studies with 691 workers). During or at the end of a work shift under 
heat stress, 35% (31–39; 33 studies with 13 088 workers) of workers experienced occupational heat strain, while 30% 
(21–39; 11 studies with 8076 workers) reported productivity losses. Finally, 15% (11–19; ten studies with 21 721 workers) 
of individuals who typically or frequently worked under heat stress (minimum of 6 h per day, 5 days per week, for 
2 months of the year) experienced kidney disease or acute kidney injury. Overall, this analysis include a variety of 
populations, exposures, and occupations to comply with a wider adoption of evidence synthesis, but resulted in large 
heterogeneity in our meta-analyses. Grading of Recommendations, Assessment, Development and Evaluation analysis 
revealed moderate confidence for most results and very low confidence in two cases (average core temperature and 
change in urine specific gravity) due to studies being funded by industry.

Interpretation Occupational heat strain has important health and productivity outcomes and should be recognised as 
a public health problem. Concerted international action is needed to mitigate its effects in light of climate change and 
the anticipated rise in heat stress.

Funding EU Horizon 2020 research and innovation programme.

Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
license.

Introduction
Nearly a third of the world’s population is regularly 
exposed to climate conditions that exceed human 
thermoregulatory capacity, leading to major increases in 
morbidity and mortality.1–3 Even if aggressive mitigation 
measures were to be adopted, estimates suggest that half 
of the world’s population will be exposed to such 
conditions by 2100,1 and several studies4–7 report that the 
resulting occupational heat strain will directly threaten 
workers’ health, with corresponding negative effects on 

productivity, poverty, and socio economic inequality. 
Occupational heat strain refers to the physiological effect 
of environmental heat stress on the body and it has a 
major impact on the ability of workers to live healthy and 
productive lives; nearly 1 million work life-years are 
projected to be lost by 2030 due to occupational heat 
stroke fatalities, with 70 million work life-years lost 
because of reduced labour productivity.8,9 Warning 
systems for extreme weather events have been piloted in 
some countries, but they are designed for the general 
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population whose needs and exposure to heat are vastly 
different from those of workers. For instance, these 
warning systems typically advise individuals to stay 
indoors throughout the day or to remain in cooling 
shelters at public buildings.10 Such strategies are not 
compatible with the need to stay productive, regardless of 
the prevailing environmental conditions.

Considering that climate change will aggravate 
workplace conditions for billions of workers,1 initiatives 
to mitigate occupational heat strain have been launched 
by, among others, WHO,11 the World Meteorological 
Association, and the European Commission (Heat 
Shield)12 to develop solutions and identify the best 
practices available. However, the magnitude of the effects 
of occupational heat strain has not been systematically 
investigated to date, primarily because the results are too 
complex to interpret by examining single studies or trials 
in specific occupational settings. Therefore, we did a 
systematic review and meta-analysis to systematically 
assess the available evidence on the effects of occupational 
heat strain on workers’ health and productivity outcomes. 
This work contributes to the foundation needed to 
develop relevant policies and programmes, to assess 
their effect on health, economic, and social benefits, and 
to evaluate their effectiveness for reducing inequalities.

Methods
Search strategy and selection criteria
Following PRISMA guidelines,13 for our systematic review 
and meta-analysis we searched the PubMed and Embase 
databases from inception to Nov 30, 2017, for studies that 
assessed the effect of occupational heat strain on workers’ 
health or productivity outcomes. A search update, via 
alerts, was done up until Feb 5, 2018. Studies done in any 

labour environment and published in any language were 
included. No restrictions on workers’ health status or 
study design were applied. The search algorithms used 
are provided in the appendix. We excluded reviews, 
conference proceedings, editorials, and magazine articles, 
but we screened the reference lists of such publications 
and of the retrieved articles for relevant papers. We 
supplemented the electronic database searches with 
manual searches for published studies in international 
trial registers and websites of international agencies 
(eg, WHO). Across all searches, we included articles if 
they consisted of original quantitative research published 
in a peer-reviewed journal or scholarly report, while we 
excluded studies that calculated effects with simulations 
or statistical models instead of actual measurements in 
humans. 

The screening of the titles, abstracts, and full texts for 
eligibility, and the selection of studies to be included, 
were done independently by two investigators (PCD and 
LGI). Any conflicts were resolved by a referee investigator 
(ADF). We included studies that involved any individuals 
working in any kind of conditions and at any level of heat 
exposure. We also included measurements that were 
done during working hours, either as an intervention 
using working modes or as epidemiological measure-
ments. We included all methodological designs that had 
any kind of control-group (ie, non-workers) or crossover 
design (ie, different working and non-working 
conditions); no sample size criterion was applied for the 
included studies. The list of included and excluded 
papers is available in the appendix.

When necessary, additional information was requested 
from the journals or the study authors via email. For all 
studies, we extracted the author names, year of 

Research in context

Evidence before this study
Occupational heat strain directly threatens workers’ ability to 
live healthy and productive lives. To date, the magnitude of this 
problem has not been systematically investigated. To fill this 
knowledge gap, we completed the first systematic review and 
meta-analysis to estimate the effects of occupational heat 
strain on workers’ health and productivity outcomes. We 
searched PubMed and Embase from the date of their inception 
to Feb 5, 2018, for studies in any labour environment, with no 
restrictions on language, workers’ health status, or study 
design. We did six random-effects meta-analyses to estimate 
the effect of occupational heat strain on different health and 
productivity outcomes. In total, 111 studies done in 
30 countries, including more than 447 million workers from 
over 40 different occupations, were eligible for analysis.

Added value of this study
This study estimated that individuals working a single work 
shift under heat stress are four times more likely to experience 

occupational heat strain, while their core temperature is 
increased by 0·7°C and their urine specific gravity is increased by 
14·5%. Of those individuals who work under heat stress, 
35% experience occupational heat strain, while 30% report 
productivity losses. Finally, 15% of individuals who typically 
work under heat stress experience kidney disease or acute 
kidney injury.

Implications of all the available evidence
Occupational heat strain has important effects on health and 
productivity outcomes and should be recognised globally as a 
public health problem. Concerted international action is 
needed to mitigate its effects in light of the occurring climate 
change and the anticipated rise in heat stress. Efforts should be 
made towards establishing a surveillance system, which will 
provide a basis for public health policy, health-care planning, 
and resource allocation for occupational heat strain prevention 
initiatives.

For more on Heat Shield see 
https://www.heat-shield.eu

See Online for appendix

https://www.heat-shield.eu
https://www.heat-shield.eu
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publication, and data on the participant numbers, age, 
sex, occupation, environmental conditions, intervention 
(if any), and adverse primary outcome (symptom, 
incidence). For epidemiological studies, we extracted 
incidence rate ratio for heat-related illness. For 
occupational health field studies, we extracted information 
for indices measured to calculate occupational heat strain: 
prevalence and SE, incidence rate ratio, risk ratio and 
odds ratio (OR), mean and SD, and confidence intervals. 
For the productivity-related field studies, we extracted the 
amount of work done, and the percentage of work time 
lost and reported productivity loss by the workers to 
calculate productivity loss for each included study. No 
transformations were applied to the extracted data.

To reduce bias and the likelihood of duplication, and to 
maximise the validity of the procedures used, we 
registered our systematic review in the international 
prospective register for systematic reviews (PROSPERO) 
database (number CRD42017083271) and reported our 
study in accordance with the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) 
checklist (appendix).13 Because all included studies used 
an observational design, two independent investigators 
(PCD and LGI) assessed the risk of bias via the 13-item 
Research Triangle Institute item bank,14 which is 
designed for observational studies and has previously 
shown median inter-rater agreement of 75%15 and 
93·5%.16 The PROSPERO study protocol can be found 
online.

Data analysis
We did six random-effect model meta-analyses. 
Specifically, for meta-analysis one, we estimated the 
prev a lence of occupational heat strain (ie, the physio-
logical consequences of environmental heat stress) that 
occurred during or at the end of a work shift in heat 
stress conditions (wet-bulb globe temperature [WBGT], 
21·2–52·0°C; air temperature, 33·0–38·7°C). Occu-
pational heat strain was defined as present if one or 
more criteria were met: (1) core body temperature higher 
than 38°C, according to international occupational 
health and safety standards;17–19 (2) at least one occu-
pational heat strain symptom, as defined by international 
health and safety guidelines17,19–22 (ie, serum creatinine 
concentration of >1·2 mg/dL [indicating acute kidney 
injury],23,24 diagnosed urinary lithiasis [indicating acute 
kidney injury],23,24 urine specific gravity ≥1·020 [indicating 
dehydration],21 heat-associated self-reported nausea or 
vomiting [indicating heatstroke],20 painful muscular 
spasms [indicating heat cramps],20 confusion, dizziness, 
or fainting [indicating heat syncope, heat exhaustion, or 
heatstroke],20 hot dry skin [indicating heatstroke],20 and 

self-reported heat strain [indicating heat exhaustion]);20 
and (3) cholesterol concentration higher than 
6·7 mmol/L or low-density lipoprotein concentration 
higher than 3·4 mmol/L (indicating heat-induced 
dyslipidaemia).25,26

For meta-analysis two, we estimated the prevalence of 
kidney disease or acute kidney injury in individuals who 
frequently or typically work in heat stress conditions 
(minimum of 6 h per day, 5 days per week, for 2 months 
of the year for typical occupations, or minimum of 12 h 
per day, 2 days per week, for 12 months of the year for 
specialised occupations, such as mining; WBGT, 
24·8–33·8°C; air temperature, 38·0–150·0°C). This 
evaluation was done given the well-established link 
between hydration and kidney function.24 The occurrence 
of kidney disease was reported via self-reporting or a 
physician diagnosis. Acute kidney injury was defined 
according to international health guidelines22,24 and 
included (appendix) estimated glomerular filtration rate, 
serum uric acid concentration, serum creatinine concen-
tration, albumin creatinine ratio, diagnosed urinary 
lithiasis, and fulfilment of KDIGO (Kidney Disease: 
Improving Global Outcomes)24 criteria (ie, increase in 
serum creatinine concentration by ≥0·3 mg/dL 
[≥26·5 μmol/L] within 48 h or increase in serum 
creatinine concentration to ≥1·5 times baseline, which is 
known or presumed to have occurred within the previous 
7 days, or urine volume <0·5 mL/kg per h for 6 h) for 
self-reported acute kidney injury.

For meta-analysis three, we estimated the prevalence of 
productivity loss in individuals working in heat stress 
conditions (WBGT, 21·2–52·0°C; air temperature, 
26·8–38·0°C), which in the included studies was either 
reported as loss of productivity or measured as loss of 
labour time, performance, or absence from work due to 
occupational heat strain (appendix).

In meta-analysis four, we estimated the OR of 
occupational heat strain that occurred during or at the 
end of a work shift performed under heat stress conditions 
(WBGT, 26·2–26·4°C; air temperature, 37·3–150·0°C). 
This assessment included comparing the occupational 
heat strain events (as defined in meta-analysis one and 
recorded by the study investigators) that occurred in heat 
stress conditions against the occupational heat strain 
events that occurred in thermoneutral conditions. Thus, 
the fourth meta-analysis complements the prevalence 
rate estimated in meta-analysis one by calculating the 
probability of an occupational heat strain event occurring 
when in hot workplace conditions.

For meta-analysis five, we estimated the average core 
temperature during a single work shift done in heat 
stress conditions (WBGT, 22·0–40·8°C; air temperature, 
29·0–47·0°C). This average was calculated by comparing 
the core temperature measurements collected at preshift 
against postshift or by comparing those collected post-
shift from individuals working in heat stress conditions 
against individuals working in thermoneutral conditions.

For the final meta-analysis, we estimated the average 
percentage change in urine specific gravity due to 
completing a single work shift in heat stress conditions 
(WBGT, 24·8–48·9°C; air temperature, 32·7–38·0°C). 
This average was calculated by comparing the urine 

For study protocol see 
https://www.crd.york.ac.uk/
PROSPERO/display_record.
php?RecordID=83271

https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=83271
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specific gravity results obtained either preshift against 
postshift or by comparing those obtained postshift from 
individuals working in heat stress conditions against 
individuals working in thermoneutral conditions.

We manually did meta-analyses one, two, and three, 
which refer to prevalence, by dividing the incidence of 
occupational heat strain by the overall sample size of 
each study. We calculated SEs for these meta-analyses 
using the formula2

We then used SEs for weighted proportions and the 
RevMan 5.3 software27 to generate forest and funnel 
plots. We did meta-analysis four, which refers to OR, 
using a dichotomous, inverse variance, random-effect 
model via the RevMan 5.3 software. We used incidence of 
occupational heat strain in individuals exposed to heat 
stress conditions against the same incidence in non-
exposed individuals, while we calculated weighted 
proportions based on each study’s sample size. We did 
meta-analyses five and six, which refer to mean 

differences, using a continuous, inverse variance, 
random-effect model via the RevMan 5.3 software. We 
used means and SDs either preshift against postshift or 
postshift from individuals working in heat stress 
conditions against postshift, or only postshift in 
individuals working in non-heat stress conditions, while 
we calculated weighted proportions based on each 
study’s sample size.28

If data for the same participants were presented in 
multiple publications, these data were only used once (ie, 
single outcome). We synthesised the study effect sizes 
using a random-effects meta-analysis model to account 
for heterogeneity due to differences in study populations, 
interventions, study duration, and other factors.

We evaluated the 95% CI and heterogeneity between 
studies using the I² statistic. We considered a significant 
result for heterogeneity when p<0·10, while interpretation 
of I² index was made based on previous guidelines.29 We 
assessed small study effects, potentially caused by 
publication bias, using funnel plots produced via RevMan. 
Given the large heterogeneity (I² >70%) in all six meta-
analyses, a sensitivity analysis was done (Grading of 
Recommendations, Assessment, Development and 
Evaluation [GRADE]) for each meta-analysis.28 GRADE 
assessed the quality of the meta-analysis results via 
methodological design, risk of bias, heterogeneity, 
indirectness, imprecision, publication bias, and effect 
sizes displayed in both the included studies in a meta-
analysis and the meta-analysis itself. GRADE rates the 
quality of a meta-analysis as very low, low, moderate, and 
high, allowing for firmer conclusions to be made.28

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to 
all the data in the study and had final responsibility for 
the decision to submit for publication. 

Results
A total of 958 records were identified through our 
systematic search, of which 105 were duplicates (figure 1). 
A further 194 records were excluded (reviews, editorials, 
or conference proceedings). Of the 465 full-text articles 
assessed for eligibility, three articles were excluded due 
to non-availability of full texts (despite contacting authors 
and journals) or due to non-English language used, while 
364 were classified as non-eligible. A total of 91 studies 
assessing the effect of occupational heat strain on 
workers’ health or productivity outcomes were included 
in the review. 20 additional studies were retrieved 
through manual searches or the reference lists of the 
retrieved articles.

The 111 studies included in the analysis were published 
between 1954 and 2018 and included 447 108 664 workers 
from more than 40 occupations. The studies were done 
across 30 countries covering all the continents, relevant 

Figure 1: Study selection

958 studies identified by database search
523 PubMed
435 Embase

299 records excluded
194 reviews, editorials, magazines, and 

conferences 
105 duplicates

659 studies screened

465 full-text articles assessed for eligibility

111 studies included in qualitative analysis 
91 via the systematic search

79 heat stress and health  
12 heat stress and productivity

20 via the manual search
9 online registries search
3 via alerts 
8 via reference lists

64 studies included in all 6 meta-analyses

374 full-text articles excluded
364 did not meet inclusion criteria

7 non-English articles 
3 no full text available 

194 excluded after screening

SE = incidence

(incidence × sample size)
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Figure 2: 30 countries where 
the 111 included studies 
took place
(A) Area plot indicating the 
number of studies per country 
categorised by WHO region. 
(B) Key performance indicators 
for the 30 countries. Share of 
world GDP estimated based on 
data from the International 
Monetary Fund World 
Economic Outlook Database, 
2017;30 share of world labour 
force estimated based on the 
Central Intelligence Agency 
World Factbook, 2018;31 share 
of world population estimated 
based on data from the World 
Population Prospects: The 
2017 Revision by the UN, 
Department of Economic and 
Social Affairs, Population 
Division.32 GDP=gross 
domestic product. 
UAE=United Arab Emirates. 
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climate zones, and WHO regions (figure 2). 56 (50%) of 
111 studies did not report funding. The remaining studies 
were funded by government agencies (41 [40%]), industrial 
actors (six [5%]), or by government and industrial 
cofunding (8 [7%]). From the 88 included studies that 
examined health-related outcomes due to occupational 
heat strain, 62 (70%) reported ranges for WBGT of 
19·3–52·0°C and air temperature of 21·2–150·0°C (this 
extreme value was recorded in a steel plant worksite). 
From the 14 included studies that examined productivity 
loss due to occupational heat strain, 10 (71%) reported 
ranges of WBGT (21·2–52·0°C) and air temperature 
(26·8–38·0°C). The main characteristics and outcomes are 
reported in the appendix.

We used data from 64 studies, which included a total of 
55 791 workers, to do the meta-analyses. 22 studies 
provided sufficient information to be used in more than 
one analysis.33–54 33 studies including 13 088 workers were 
included in meta-analysis one. The pooled proportion of 
individuals experiencing occupational heat strain during 
or at the end of a work shift in heat stress conditions was 
35% (95% CI 31–39; appendix). Ten studies with 
21 721 workers were included in meta-analysis two. The 
pooled proportion of individuals who frequently work in 
heat stress conditions and experience kidney disease or 
acute kidney injury was 15% (11–19; appendix). 11 studies 
with 8076 workers were included in meta-analysis three. 
The pooled proportion of individuals showing productivity 
loss due to occupational heat strain during work in heat 
stress conditions was 30% (21–39; appendix). In addition 
to the prevalence of productivity loss, seven studies4–6,38,55–57 
reported precise changes in productivity as a function of 
environmental heat stress. These studies suggest an 
average 2·6% productivity decline (individual study 
estimates: 0·8%,4 1·4%,5 1·8%,56 2·2%,38 2·8%,57 4·4%,55 
5·0%6) for every degree increase beyond 24°C WBGT. 
Nine studies with 11 582 workers were included in meta-

analysis four. Individuals working in heat stress conditions 
were more likely to experience occupational heat strain 
during or at the end of a work shift compared with 
individuals working in thermoneutral conditions (OR 4·01 
[2·45–6·58]; table; appendix). 17 studies with 633 workers 
were included in meta-analysis five. The average increase 
in core temperature during a single work shift due to 
working in heat stress conditions was 0·7°C (0·4–1·0°C; 
table). 14 studies of 691 workers were included in meta-
analysis six. The average urine specific gravity during a 
work shift in thermoneutral conditions was 1·0214, in line 
with reference values of 1·013 to 1·029 for healthy adults.58 
The average increase due to working in heat stress 
conditions was 0·0031 (0·0014–0·0048; table; appendix), 
which is equal to a 14·5% (6·5–22·4) increase.

The variety of populations, exposures, and occupations 
used in the six meta-analyses provided a wide adoption of 
evidence synthesis, but resulted in large heterogeneity 
with an average I² of 80% (table). For meta-analyses one 
to four, GRADE analysis (appendix) revealed that the true 
effect is likely to be close to the estimate of the effect, but 
it is possibly substantially different (moderate 
confidence). For meta-analyses five and six, GRADE 
analysis revealed that the true effect is likely to be 
substantially different from the estimate of effect (very 
low confidence). Most (68%)4,6,26,33–35,39–43,45,46,50–55,56,57,59–104 of the 
included studies incorporated low risk for selection bias, 
with the remaining studies presenting selection bias that 
was non-applicable (10%),36,105–126 unclear (16%),37,47–49,118,127–132 
or, in some cases, high risk (6%)5,38,44,133 due to across-
group variation in inclusion or exclusion criteria, and 
across-group differences in participant recruitment or 
selection. Most (61%) of the included studies incorporated 
low risk for confounding factors bias, with the remaining 
studies presenting confounding factor bias that was 
unclear (16%)6,26,36,38,60,62,63,67,80,84,85,92,98–100,102,105,107–111,113,114,134–136 or 
high risk (23%)33,35,37,44,45,47,49,59,66,74,83,86,89,91,94,96,118,127,128,132,137,138 due to 

Outcome Studies 
included

Number of 
positive events 
in workers 
assessed*

Controls Prevalence 
(95% CI)

Odds ratio 
(95% CI)

Mean 
difference 
(95% CI)

I² Risk of bias (%)†

A B C D E F

1 Prevalence of occupational heat strain 33 2517/13 088 ·· 35% (31–39) ·· ·· 97% 77 100 13 0 90 59

2 Prevalence of kidney disease or acute 
kidney injury

10 80/21 721 ·· 15% (11–19) ·· ·· 96% 58 92 25 8 92 58

3 Prevalence of productivity loss 11 961/8076 ·· 30% (21–39) ·· ·· 98% 64 91 0 0 82 45

4 Occupational heat strain during or at 
end of a work shift

8 420/2009 217/9573 .. 4·01 (2·45–6·58) ·· 73% 78 100 0 0 100 56

5 Average core temperature during 
work shift in heat stress conditions

17 575 515 .. ·· 0·7°C (0·4–1·0) 99% 78 100 0 0 94 89

6 Change in urine specific gravity due to 
a work shift in heat stress conditions

14 679 684 .. ·· 0·003 
(0·001–0·005)

71% 80 100 0 0 100 80

*For meta-analyses 5 and 6, number of workers assessed shown only. †Risk of bias estimates are the proportion of studies assessed as low risk in terms of selection bias (A), performance bias (B), detection bias 
(C), attrition bias (D), selective outcome bias (E), and confounding factors bias (F). 

Table: Six random-effects meta-analyses assessing the effects of occupational heat strain on workers’ health and productivity outcomes
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non-reporting of limitations or no attempt to balance 
reallocation between groups or variables. However, most 
(85%) of the included studies incorporated unclear risk 
of detection bias since almost all included valid and 
reliable measures, but assessors in only one study135 were 
masked to the measurements. Finally, attrition bias 
was not applicable in 97% of the included studies as 
most of them were cross-sectional.

Discussion
Our systematic evaluation shows that the effects of 
occupational heat strain on workers’ health and 
productivity outcomes have been studied heavily across 
continents and in many different occupations for more 
than six decades. The quality of studies on this topic is 
high because most of the included studies incorporated 
low risk of bias for performance (97%) and selective 
outcome (93%). Two large-scale epidemiological studies 
on heat-related illness and mortality (which were not 
included in our meta-analyses) reported that workplace 
environmental heat stress is responsible for 13–36 deaths 
per year in the USA alone.113,120 It is important to note that 
seven67,74,85,87,94,132,135 of the 47 studies excluded in our meta-
analyses showed no effect of workplace environmental 
heat stress on the prevalence of heat-related illness or 
health outcomes.

Most of the 111 studies included in this systematic 
review suggest that working in hot conditions (WGBT 
>22°C for very intense work; WBGT >25°C for most 
occupations) increases the likelihood of experiencing 
occupational heat strain, with significant detrimental 
effects on health and productivity. We attempted to 
quantify these effects by extracting data from 64 of these 
studies for use in six meta-analyses. Our results showed 
that individuals working in heat stress conditions were 
four times more likely to experience occupational heat 
strain during or at the end of a work shift compared with 
individuals working in thermoneutral conditions. 
Indeed, working a shift in thermoneutral conditions did 
not lead to physiological or clinical effects on core 
temperature, which, on average, remained at 36·9°C 
(SD 0·3). However, individuals who worked a single shift 
in heat stress conditions showed average core temp-
erature values of 37·6°C (SD 0·4), while 35% of them 
experienced occupational heat strain. This occupational 
heat strain is also associated with dehydration; our 
analyses show that people who worked a single shift in 
heat stress conditions had an increase of 14·5% in urine 
specific gravity compared with those who worked a shift 
in thermoneutral conditions. Given the well-established 
links between hydration and kidney function,24 we were 
not surprised to find that 15% of individuals who typically 
or frequently (minimum of 6 h per day, 5 days per week, 
for 2 months of the year for most occupations) worked in 
heat stress conditions had kidney disease or acute kidney 
injury. Finally, in our analyses, 30% of individuals 
working in heat stress conditions had losses in 

productivity. These losses increased by 2·6% for every 
degree increase beyond 24°C WBGT.

Possible effect modifiers should be considered when 
interpreting the present results. The analysed studies did 
not provide clear information to allow for occupational 
classification into formal or informal sectors. Moreover, 
54 of the analysed studies assessed indoor workers, 
33 assessed outdoor workers, while 24 of the analysed 
studies did large-scale epidemiological assessments of 
many indoor and outdoor workers. To avoid reducing the 
statistical power of the meta-analyses and the clarity of 
the review (by presenting 12 meta-analyses), we did not 
divide our analyses into indoor and outdoor workers.

Our estimate that 35% of individuals working in heat 
stress conditions experience occupational heat strain is 
in line with the 30% (95% CI 24–36) prevalence reported 
for increased susceptibility to heat stress (an inability to 
mitigate hyperthermia) when working or exercising in 
hot environments,139 and with epidemiological data140,141 
for morbidity and mortality during extreme heat events. 
When compared with normative values for healthy,142–144 
obese,145 or acutely-ill146 adults, the average core 
temperature of 37·6°C estimated for individuals 
working a shift under heat stress is considered 
borderline hyperthermia or pyrexia. While core 
temperature thresholds for hyperthermia, fever, and 
heat injury vary across individuals,144 those who are 
older, obese, unfit, have chronic disease, or experience 
acute illness or infection are at a high risk for heat-
induced pathologies (eg, heat cramps, heat exhaustion, 
and heat stroke).1,7,139,147

We used the standard definitions of kidney disease and 
acute kidney injury proposed by the KDIGO clinical 
practice guidelines workgroup24 and found that 15% of 
individuals working in heat stress have these conditions, 
which is markedly higher than the prevalence rates 
reported for kidney disease (10%)148 and acute kidney 
injury in high-income (2%)149,150 and low-income 
(3–9%)151,152 countries. Taken together, these results raise 
serious concerns for the kidney function of individuals 
who typically or frequently work in heat stress conditions, 
because even a single episode of acute kidney injury can 
lead to chronic kidney disease, with substantial 
socioeconomic and public health outcomes.153

The present systematic review and meta-analysis 
includes various populations, exposures, and occu-
pations to allow the synthesis of a broad range of 
evidence.154 While this approach allowed us to form a 
meaningful conclusion instead of narrowing down our 
research question, it resulted in large heterogeneity in 
our meta-analyses. We addressed this issue by 
implementing a GRADE analysis, which revealed 
moderate confidence in the results of our meta-analyses 
one to four and very low confidence in the results of our 
meta-analyses five and six, which was largely because 
23·5% of studies in five and 28·5% of studies in six were 
funded by industry.
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Overall, this study included over 447 million workers 
from more than 40 different occupations across 
30 countries around the globe, including countries from 
all continents, relevant climate zones, and WHO regions. 
The countries included comprise 77% of the world gross 
domestic product, 65% of the global labour force, and 
60% of the world population (figure 2). We did not limit 
our search based on language, population characteristics, 
region, date, and occupation, and we adopted standardised 
and comprehensive search approaches for the identi-
fication, screening, and extraction of evidence. This 
approach, and the fact that we pooled all available data 
from the included studies, mitigates threats to good 
quality systematic reviews and meta-analyses154 and 
increased the total number of cases in our qualitative and 
quantitative data synthesis. However, our analysis is not 
without its limitations. First, some studies included in the 
meta-analyses for the prevalence of occupational heat 
strain, kidney disease, and productivity loss used self-
reported tools to assess symptoms or productivity loss 
and, therefore, are susceptible to reporting and recall 
bias. Therefore, our reported prevalence rates might be 
overestimated or underestimated. Yet, these studies 
included representative and large samples, which limits 
the potential for error in their estimates. Second, the 
devices and methods used to assess core temperature and 
urine specific gravity vary across the included studies. 
However, the adopted methods are well accepted, which 
minimises this bias. Third, many of the analysed studies 
did not provide exact WBGT or air temperature values as 
thresholds for occupational heat strain. To address this 
issue, we report the ranges of WBGT or air temperature 
for all the studies in which such data are provided. Fourth, 
the studies included in our meta-analyses were typically 
regionally confined and were done in cases where a high 
prevalence or effect was expected. Therefore, the effects 
reported in this study might not apply in cold regions, 
seasons, and jobs that are not associated with occupational 
heat strain or workplace heat exposure. Nonetheless, this 
study used the best available data and provides working 
estimates on the effects of occupational heat strain on 
workers’ health and productivity outcomes across 
30 countries and many occupations. These data provide 
useful indicators of the public health burden of 
occupational heat strain and provide a basis for health 
and safety policy and for relevant prevention initiatives.

Our findings show that occupational heat strain, a fully 
preventable condition, has important health and 
productivity outcomes and should be recognised as a 
public health problem. Concerted international action is 
needed to mitigate the effects of occupational heat strain, 
particularly in light of climate change and the anticipated 
rise in environmental heat stress. The presented evidence 
shows the urgent need to establish a surveillance system 
to monitor prevalence of occupational heat strain 
throughout the world. At the same time, increased efforts 
should be made to educate workers and employers about 

the health and performance effects of occupational heat 
strain, and appropriate screening protocols should be 
incorporated within health and safety legislation. 
Importantly, physicians and other health-care providers 
can play a crucial part in the primary prevention and 
management of occupational heat strain.
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