178 research outputs found

    Habitat distribution modeling reveals vegetation flammability and land use as drivers of wildfire in SW Patagonia

    Get PDF
    Despite important recent advances in modeling current and future global fire activity in relation to biophysical predictors there remain important uncertainties about finer-scale spatial heterogeneity of fire and especially about human influences which are typically assessed at coarse-spatial resolutions. The purpose of the current study is to quantify the influence of biophysical and anthropogenic variables on the spatial distribution of wildfire activity between 1984 and 2010 over an extensive southern Patagonian-Andean region from ca. 43° to 53° S extending from coastal rainforests to xeric woodland and steppe. We used satellite imagery to map all detectable fires > 5 ha from 1984 to 2010 in four study areas (each of 13,100 to 36,635 km2) and field checked 65 of these burns for accuracy of burned vegetation class and fire perimeters. Then, we used the MaxEnt modeling technique to assess the relationships of wildfire distributions to biophysical and human environmental variables in each of the four regions. The 232 fires > 5 ha mapped in the four study areas accounted for an area of 1,314 km2 indicating that at least 1.8% of the total area burned between 1984 and 2010. In general, areas with intermediate productivity levels (e.g. shrublands) have higher fire probability compared with areas of low and high productivity levels, such as steppe and wet forests, respectively. There is a marked contrast in the flammability of broad vegetation classes in determining fire activity at a regional scale, as well as a strong spatial relationship of wildfires to anthropogenic variables. The juxtaposition of fire-resistant tall forests with fire-prone shrublands and woodlands creates the potential for positive feedbacks from human-set fires to gradually increase the flammability of extensive landscapes through repeated burning. Distance to roads and settlements were also strong predictors, suggesting that fire in all regions is ignition-limited. However, these anthropogenic predictors influenced probability of fire differently among study regions depending on their main land-use practices and their past and present socioeconomic contexts.Fil: Paritsis, Juan. State University Of Colorado-boulder; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; ArgentinaFil: Holz, Andrés. State University Of Colorado-boulder; Estados UnidosFil: Veblen, Thomas T.. State University Of Colorado-boulder; Estados UnidosFil: Kitzberger, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; Argentin

    Analysis of Diterpens in Green and Roasted Coffee of Coffea arabica Cultivars Growing in the Same Edapho-Climatic Conditions.

    Get PDF
    Lipids are important components of coffee beverage flavor and aroma. Coffee oil is rich in diterpens of the kaurane family, mainly cafestol (C20H28O3) and kahweol (C20H26O3), which have increasingly received attention in recent years due to their physiological effects in human health. However, few studies have been conducted on the effects of the genetic variability for those lipids in Coffea arabica. In this work we initiate the characterization of cafestol and kahweol in different cultivars of Coffea arabica, growing in the same edaphoclimatic conditions. Mature coffee fruits from cultivars Catuaí, Icatu and three Catucaí derived the cultivars IPR 100, IPR 102 and IPR 106. They were harvested at the Agricultural Field Station of the Coop COCARI, Mandaguari, Paraná, Brazil, from May to July 2009. Although the time of harvesting was according to the maturation of each cultivar, harvesting and post-harvesting conditions were the same for all cultivars. The five samples were subjected to medium roasting for 8 to 11 minutes at 200-210 °C, until the degree of roasting light/media (L* around 28). The extraction of diterpens was carried out in green or roasted coffee by direct saponification with KOH, extraction with terc-butyl methyl ether, and clean up with water. A reverse-phase HPLC column with isocratic elution with acetonitrile/water (55/45 v/v) was used for detection and quantification of kahweol at 290 nm and cafestol at 220 nm. In green beans, the level of kahweol was higher than cafestol, for all three IPR cultivars. Meanwhile, the inverse was observed for green beans cultivars Catuaí and Icatu, where cafestol levels were higher than kahweol. The higher levels of kahweol in relation to cafestol were again observed in roasted coffee of the three IPR cultivars. In cultivars Icatu the values for kahweol and cafestol were similar (635 and 683 mg/100 g, respectively). The highest levels of kahweol were observed in cultivar IPR 106 (1096 mg/100 g). The cultivar IPR 102 showed the highest level of cafestol (394 mg/100g). Association of this data with gene expression profile can be useful to find genes involved in cafestol and kahweol metabolism as well as to develop molecular markers for diterpens in coffee

    Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services

    Get PDF
    Although ecological restoration is widely used to combat environmental degradation, very few studies have evaluated the cost-effectiveness of this approach. We examine the potential impact of forest restoration on the value of multiple ecosystem services across four dryland areas in Latin America, by estimating the net value of ecosystem service benefits under different reforestation scenarios. The values of selected ecosystem services were mapped under each scenario, supported by the use of a spatially explicit model of forest dynamics. We explored the economic potential of a change in land use from livestock grazing to restored native forest using different discount rates and performed a cost–benefit analysis of three restoration scenarios. Results show that passive restoration is cost-effective for all study areas on the basis of the services analyzed, whereas the benefits from active restoration are generally outweighed by the relatively high costs involved. These findings were found to be relatively insensitive to discount rate but were sensitive to the market value of carbon. Substantial variation in values was recorded between study areas, demonstrating that ecosystem service values are strongly context specific. However, spatial analysis enabled localized areas of net benefits to be identified, indicating the value of this approach for identifying the relative costs and benefits of restoration interventions across a landscape

    Diterpenes biochemical profile and transcriptional analysis of cytochrome P450s genes in leaves, roots, flowers, and during Coffea arabica L. fruit development.

    Get PDF
    Lipids are among the major chemical compounds present in coffee beans, and they affect the flavor and aroma of the coffee beverage. Coffee oil is rich in kaurene diterpene compounds, mainly cafestol (CAF) and kahweol (KAH), which are related to plant defense mechanisms and to nutraceutical and sensorial beverage characteristics. Despite their importance, the final steps of coffee diterpenes biosynthesis remain unknown. To understand the molecular basis of coffee diterpenes biosynthesis, we report the content dynamics of CAF and KAH in several Coffea arabica tissues and the transcriptional analysis of cytochrome P450 genes (P450). We measured CAF and KAH concentrations in leaves, roots, flower buds, flowers and fruit tissues at seven developmental stages (30e240 days after flowering - DAF) using HPLC. Higher CAF levels were detected in flower buds and flowers when compared to fruits. In contrast, KAH concentration increased along fruit development, peaking at 120 DAF. We did not detect CAF or KAH in leaves, and higher amounts of KAH than CAF were detected in roots. Using P450 candidate genes from a coffee EST database, we performed RT-qPCR transcriptional analysis of leaves, flowers and fruits at three developmental stages (90, 120 and 150 DAF). Three P450 genes (CaCYP76C4, CaCYP82C2 and CaCYP74A1) had transcriptional patterns similar to CAF concentration and two P450 genes (CaCYP71A25 and CaCYP701A3) have transcript accumulation similar to KAH concentration. These data warrant further investigation of these P450s as potential candidate genes involved in the final stages of the CAF and KAH biosynthetic pathways

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Forest and woodland replacement patterns following drought-related mortality

    Get PDF
    Forest vulnerability to drought is expected to increase under anthropogenic climate change, and drought-induced mortality and community dynamics following drought have major ecological and societal impacts. Here, we show that tree mortality concomitant with drought has led to short-term (mean 5 y, range 1 to 23 y after mortality) vegetation-type conversion in multiple biomes across the world (131 sites). Self-replacement of the dominant tree species was only prevalent in 21% of the examined cases and forests and woodlands shifted to nonwoody vegetation in 10% of them. The ultimate temporal persistence of such changes remains unknown but, given the key role of biological legacies in long-term ecological succession, this emerging picture of postdrought ecological trajectories highlights the potential for major ecosystem reorganization in the coming decades. Community changes were less pronounced under wetter postmortality conditions. Replacement was also influenced by management intensity, and postdrought shrub dominance was higher when pathogens acted as codrivers of tree mortality. Early change in community composition indicates that forests dominated by mesic species generally shifted toward more xeric communities, with replacing tree and shrub species exhibiting drier bioclimatic optima and distribution ranges. However, shifts toward more mesic communities also occurred and multiple pathways of forest replacement were observed for some species. Drought characteristics, species-specific environmental preferences, plant traits, and ecosystem legacies govern post drought species turnover and subsequent ecological trajectories, with potential far-reaching implications for forest biodiversity and ecosystem services.Peer reviewe

    Non-linear effects of drought under shade: reconciling physiological and ecological models in plant communities

    Get PDF
    The combined effects of shade and drought on plant performance and the implications for species interactions are highly debated in plant ecology. Empirical evidence for positive and negative effects of shade on the performance of plants under dry conditions supports two contrasting theoretical models about the role of shade under dry conditions: the trade-off and the facilitation hypotheses. We performed a meta-analysis of field and greenhouse studies evaluating the effects of drought at two or more irradiance levels on nine response variables describing plant physiological condition, growth, and survival. We explored differences in plant response across plant functional types, ecosystem types and methodological approaches. The data were best fit using quadratic models indicating a humped-back shape response to drought along an irradiance gradient for survival, whole plant biomass, maximum photosynthetic capacity, stomatal conductance and maximal photochemical efficiency. Drought effects were ameliorated at intermediate irradiance, becoming more severe at higher or lower light levels. This general pattern was maintained when controlling for potential variations in the strength of the drought treatment among light levels. Our quantitative meta-analysis indicates that dense shade ameliorates drought especially among drought-intolerant and shade-tolerant species. Wet tropical species showed larger negative effects of drought with increasing irradiance than semiarid and cold temperate species. Non-linear responses to irradiance were stronger under field conditions than under controlled greenhouse conditions. Non-linear responses to drought along the irradiance gradient reconciliate opposing views in plant ecology, indicating that facilitation is more likely within certain range of environmental conditions, fading under deep shade, especially for drought-tolerant species
    corecore