233 research outputs found

    Nanostructured TiO2 sensitized with MoS2 nanoflowers for enhanced photodegradation efficiency toward methyl orange

    Get PDF
    Nanostructured titanium dioxide (TiO2) has a potential platform for the removal of organic contaminants, but it has some limitations. To overcome these limitations, we devised a promising strategy in the present work, the heterostructures of TiO2 sensitized by molybdenum disulfide (MoS2) nanoflowers synthesized by the mechanochemical route and utilized as an efficient photocatalyst for methyl orange (MO) degradation. The surface of TiO2 sensitized by MoS2 was comprehensively characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence spectroscopy (PL), Brunauer-Emmett-Teller (BET) surface area, and thermogravimetric analysis (TGA). From XRD results, the optimized MoS2-TiO2 (5.0 wt %) nanocomposite showcases the lowest crystallite size of 14.79 nm than pristine TiO2 (20 nm). The FT-IR and XPS analyses of the MoS2-TiO2 nanocomposite exhibit the strong interaction between MoS2 and TiO2. The photocatalytic results show that sensitization of TiO2 by MoS2 drastically enhanced the photocatalytic activity of pristine TiO2. According to the obtained results, the optimal amount of MoS2 loading was assumed to be 5.0 wt %, which exhibited a 21% increment of MO photodegradation efficiency compared to pristine TiO2 under UV-vis light. The outline of the overall study describes the superior photocatalytic performance of 5.0 wt % MoS2-TiO2 nanocomposite which is ascribed to the delayed recombination by efficient charge transfer, high surface area, and elevated surface oxygen vacancies. The context of the obtained results designates that the sensitization of TiO2 with MoS2 is a very efficient nanomaterial for photocatalytic applications

    Exoplanet Characterization and the Search for Life

    Full text link
    Over 300 extrasolar planets (exoplanets) have been detected orbiting nearby stars. We now hope to conduct a census of all planets around nearby stars and to characterize their atmospheres and surfaces with spectroscopy. Rocky planets within their star's habitable zones have the highest priority, as these have the potential to harbor life. Our science goal is to find and characterize all nearby exoplanets; this requires that we measure the mass, orbit, and spectroscopic signature of each one at visible and infrared wavelengths. The techniques for doing this are at hand today. Within the decade we could answer long-standing questions about the evolution and nature of other planetary systems, and we could search for clues as to whether life exists elsewhere in our galactic neighborhood.Comment: 7 pages, 2 figures, submitted to Astro2010 Decadal Revie

    A transmission spectrum of the sub-Earth planet L98-59~b in 1.1-1.7 Ό\mum

    Get PDF
    With the increasing number of planets discovered by TESS, the atmospheric characterization of small exoplanets is accelerating. L98-59 is a M-dwarf hosting a multi-planet system, and so far, four small planets have been confirmed. The innermost planet b is ∌15%\sim15\% smaller and ∌60%\sim60\% lighter than Earth, and should thus have a predominantly rocky composition. The Hubble Space Telescope observed five primary transits of L98-59b in 1.1−1.7 Ό1.1-1.7\ \mum, and here we report the data analysis and the resulting transmission spectrum of the planet. We measure the transit depths for each of the five transits and, by combination, we obtain a transmission spectrum with an overall precision of ∌20\sim20 ppm in for each of the 18 spectrophotometric channels. With this level of precision, the transmission spectrum does not show significant modulation, and is thus consistent with a planet without any atmosphere or a planet having an atmosphere and high-altitude clouds or haze. The scenarios involving an aerosol-free, H2_2-dominated atmosphere with H2_2O or CH4_4 are inconsistent with the data. The transmission spectrum also disfavors, but does not rules out, an H2_2O-dominated atmosphere without clouds. A spectral retrieval process suggests that an H2_2-dominated atmosphere with HCN and clouds or haze may be the preferred solution, but this indication is non-conclusive. Future James Webb Space Telescope observations may find out the nature of the planet among the remaining viable scenarios.Comment: 17 pages, 5 figures, 7 tables, accepted for publication in A

    Genetic and Environmental Influences on Individual Differences in Attitudes Toward Homosexuality: An Australian Twin Study

    Get PDF
    Previous research has shown that many heterosexuals hold negative attitudes toward homosexuals and homosexuality (homophobia). Although a great deal of research has focused on the profile of homophobic individuals, this research provides little theoretical insight into the aetiology of homophobia. To examine genetic and environmental influences on variation in attitudes toward homophobia, we analysed data from 4,688 twins who completed a questionnaire concerning sexual behaviour and attitudes, including attitudes toward homosexuality. Results show that, in accordance with literature, males have significantly more negative attitudes toward homosexuality than females and non-heterosexuals are less homophobic than heterosexuals. In contrast with some earlier findings, age had no significant effect on the homophobia scores in this study. Genetic modelling showed that variation in homophobia scores could be explained by additive genetic (36%), shared environmental (18%) and unique environmental factors (46%). However, corrections based on previous findings show that the shared environmental estimate may be almost entirely accounted for as extra additive genetic variance arising from assortative mating for homophobic attitudes. The results suggest that variation in attitudes toward homosexuality is substantially inherited, and that social environmental influences are relatively minor

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Solubility of Rock in Steam Atmospheres of Planets

    Get PDF
    Extensive experimental studies show that all major rock-forming elements (e.g., Si, Mg, Fe, Ca, Al, Na, K) dissolve in steam to a greater or lesser extent. We use these results to compute chemical equilibrium abundances of rocky-element-bearing gases in steam atmospheres equilibrated with silicate magma oceans. Rocky elements partition into steam atmospheres as volatile hydroxide gases (e.g., Si(OH)4, Mg(OH)2, Fe(OH)2, Ni(OH)2, Al(OH)3, Ca(OH)2, NaOH, KOH) and via reaction with HF and HCl as volatile halide gases (e.g., NaCl, KCl, CaFOH, CaClOH, FAl(OH)2) in much larger amounts than expected from their vapor pressures over volatile-free solid or molten rock at high temperatures expected for steam atmospheres on the early Earth and hot rocky exoplanets. We quantitatively compute the extent of fractional vaporization by defining gas/magma distribution coefficients and show that Earth's subsolar Si/Mg ratio may be due to loss of a primordial steam atmosphere. We conclude that hot rocky exoplanets that are undergoing or have undergone escape of steam-bearing atmospheres may experience fractional vaporization and loss of Si, Mg, Fe, Ni, Al, Ca, Na, and K. This loss can modify their bulk composition, density, heat balance, and interior structure
    • 

    corecore