26 research outputs found

    Differential IRF8 Transcription Factor Requirement Defines Two Pathways of Dendritic Cell Development in Humans

    Get PDF
    The formation of mammalian dendritic cells (DCs) is controlled by multiple hematopoietic transcription factors, including IRF8. Loss of IRF8 exerts a differential effect on DC subsets, including plasmacytoid DCs (pDCs) and the classical DC lineages cDC1 and cDC2. In humans, cDC2-related subsets have been described including AXL+ SIGLEC6+ pre-DC, DC2 and DC3. The origin of this heterogeneity is unknown. Using highdimensional analysis, in vitro differentiation, and an allelic series of human IRF8 deficiency, we demonstrated that cDC2 (CD1c+ DC) heterogeneity originates from two distinct pathways of development. The lymphoidprimed IRF8hi pathway, marked by CD123 and BTLA, carried pDC, cDC1, and DC2 trajectories, while the common myeloid IRF8lo pathway, expressing SIRPA, formed DC3s and monocytes. We traced distinct trajectories through the granulocyte-macrophage progenitor (GMP) compartment showing that AXL+ SIGLEC6+ pre-DCs mapped exclusively to the DC2 pathway. In keeping with their lower requirement for IRF8, DC3s expand to replace DC2s in human partial IRF8 deficiency

    Dendritic cells in cancer immunology and immunotherapy

    Get PDF
    Dendritic cells (DCs) are a diverse group of specialized antigen-presenting cells with key roles in the initiation and regulation of innate and adaptive immune responses. As such, there is currently much interest in modulating DC function to improve cancer immunotherapy. Many strategies have been developed to target DCs in cancer, such as the administration of antigens with immunomodulators that mobilize and activate endogenous DCs, as well as the generation of DC-based vaccines. A better understanding of the diversity and functions of DC subsets and of how these are shaped by the tumour microenvironment could lead to improved therapies for cancer. Here we will outline how different DC subsets influence immunity and tolerance in cancer settings and discuss the implications for both established cancer treatments and novel immunotherapy strategies.S.K.W. is supported by a European Molecular Biology Organization Long- Term Fellowship (grant ALTF 438– 2016) and a CNIC–International Postdoctoral Program Fellowship (grant 17230–2016). F.J.C. is the recipient of a PhD ‘La Caixa’ fellowship. Work in the D.S. laboratory is funded by the CNIC, by the European Research Council (ERC Consolidator Grant 2016 725091), by the European Commission (635122-PROCROP H2020), by the Ministerio de Ciencia, Innovación e Universidades (MCNU), Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional (FEDER) (SAF2016-79040-R), by the Comunidad de Madrid (B2017/BMD-3733 Immunothercan- CM), by FIS- Instituto de Salud Carlos III, MCNU and FEDER (RD16/0015/0018-REEM), by Acteria Foundation, by Atresmedia (Constantes y Vitales prize) and by Fundació La Marató de TV3 (201723). The CNIC is supported by the Instituto de Salud Carlos III, the MCNU and the Pro CNIC Foundation, and is a Severo Ochoa Centre of Excellence (SEV-2015-0505).S

    CD8α +

    No full text

    TAO-kinase 3 governs the terminal differentiation of conventional dendritic cells

    No full text
    Antigen-presenting conventional dendritic cells (cDCs) are broadly divided into type 1 and type 2 subsets that further adapt their phenotype and function to perform specialized tasks in the immune system. The precise signals controlling tissue-specific adaptation and differentiation of cDCs are currently poorly understood. We found that mice deficient in the Ste20 kinase Thousand and One Kinase 3 (TAOK3) lacked terminally differentiated ESAM(+) CD4(+) cDC2s in the spleen and failed to prime CD4(+) T cells in response to allogeneic red-blood-cell transfusion. These NOTCH2and ADAM10dependent cDC2s were absent selectively in the spleen, but not in the intestine of Taok3(-/-) and CD11c-cre Taok3(fl/fl) mice. The loss of splenic ESAM(+) cDC2s was cell-intrinsic and could be rescued by conditional overexpression of the constitutively active NOTCH intracellular domain in CD11c-expressing cells. Therefore, TAOK3 controls the terminal differentiation of NOTCH2-dependent splenic cDC2s
    corecore