138 research outputs found

    Gorlin syndrome associated with small bowel carcinoma and mesenchymal proliferation of the gastrointestinal tract: case report and review of literature

    Get PDF
    <p>Abstract</p> <p>Background and Case Presentation</p> <p>A patient with nevoid basal cell carcinoma syndrome (Gorlin syndrome) presented with two unusual clinical features, i.e. adenocarcinoma of the small bowel and extensive mesenchymal proliferation of the lower gastrointestinal tract.</p> <p>Conclusions</p> <p>We discuss the possibility that these two features are pathogenetically linked to the formerly undescribed patient's <it>PTCH </it>germ line mutation.</p

    Inactivation of VCP/ter94 Suppresses Retinal Pathology Caused by Misfolded Rhodopsin in Drosophila

    Get PDF
    The most common Rhodopsin (Rh) mutation associated with autosomal dominant retinitis pigmentosa (ADRP) in North America is the substitution of proline 23 by histidine (RhP23H). Unlike the wild-type Rh, mutant RhP23H exhibits folding defects and forms intracellular aggregates. The mechanisms responsible for the recognition and clearance of misfolded RhP23H and their relevance to photoreceptor neuron (PN) degeneration are poorly understood. Folding-deficient membrane proteins are subjected to Endoplasmic Reticulum (ER) quality control, and we have recently shown that RhP23H is a substrate of the ER–associated degradation (ERAD) effector VCP/ter94, a chaperone that extracts misfolded proteins from the ER (a process called retrotranslocation) and facilitates their proteasomal degradation. Here, we used Drosophila, in which Rh1P37H (the equivalent of mammalian RhP23H) is expressed in PNs, and found that the endogenous Rh1 is required for Rh1P37H toxicity. Genetic inactivation of VCP increased the levels of misfolded Rh1P37H and further activated the Ire1/Xbp1 ER stress pathway in the Rh1P37H retina. Despite this, Rh1P37H flies with decreased VCP function displayed a potent suppression of retinal degeneration and blindness, indicating that VCP activity promotes neurodegeneration in the Rh1P37H retina. Pharmacological treatment of Rh1P37H flies with the VCP/ERAD inhibitor Eeyarestatin I or with the proteasome inhibitor MG132 also led to a strong suppression of retinal degeneration. Collectively, our findings raise the possibility that excessive retrotranslocation and/or degradation of visual pigment is a primary cause of PN degeneration

    NCAM (CD56) Expression in keratin-producing odontogenic cysts: aberrant expression in KCOT

    Get PDF
    Background: Keratin-producing odontogenic cysts (KPOCs) are a group of cystic lesions that are often aggressive, with high rates of recurrence and multifocality. KPOCs included orthokeratinised odontogenic cyst (OOC) and parakeratotic odontogenic cysts, which are now considered true tumours denominated keratocystic odontogenic tumours (KCOTs). GLUT1 is a protein transporter that is involved in the active uptake of glucose across cell membranes and that is overexpressed in tumours in close correlation with the proliferation rate and positron emission tomography (PET) imaging results. Methods: A series of 58 keratin-producing odontogenic cysts was evaluated histologically and immunohistochemically in terms of GLUT1 expression. Different data were correlated using the beta regression model in relation to histological type and immunohistochemical expression of GLUT1, which was quantified using two different morphological methods. Results: KPOC cases comprised 12 OOCs and 46 KCOTs, the latter corresponding to 6 syndromic and 40 sporadic KCOTs. GLUT1 expression was very low in OOC cases compared with KCOT cases, with statistical significant differences when quantification was considered. Different GLUT1 localisation patterns were revealed by immunostaining, with the parabasal cells showing higher reactivity in KCOTs. However, among KCOTs cases, GLUT1 expression was unable to establish differences between syndromic and sporadic cases. Conclusions: GLUT1 expression differentiated between OOC and KCOT cases, with significantly higher expression in KCOTs, but did not differentiate between syndromic and sporadic KCOT cases. However, given the structural characteristics of KCOTs, we hypothesised that PET imaging methodology is probably not a useful diagnostic tool for KCOTs. Further studies of GLUT1 expression and PET examination in KCOT series are needed to confirm this last hypothesis. Keywords: Glucose transporter protein, Immunohistochemistry, Keratin-producing odontogenic cyst, Keratocystic odontogenic tumour, Orthokeratinised odontogenic cyst, Positron emission tomograph

    IBMPFD disease-causing mutant VCP/p97 proteins are targets of autophagic-lysosomal degradation

    Get PDF
    The ubiquitin-proteasome system (UPS) degrades soluble proteins and small aggregates, whereas macroautophagy (autophagy herein) eliminates larger protein aggregates, tangles and even whole organelles in a lysosome-dependent manner. VCP/p97 was implicated in both pathways. VCP/p97 mutations cause a rare multisystem disease called IBMPFD (Inclusion Body Myopathy with Paget's Disease and Frontotemporal Dementia). Here, we studied the role IBMPFD-related mutants of VCP/p97 in autophagy. In contrast with the wild-type VCP/p97 protein or R155C or R191Q mutants, the P137L mutant was aggregate-prone. We showed that, unlike commonly studied R155C or R191Q mutants, the P137L mutant protein stimulated both autophagosome and autolysosome formation. Moreover, P137L mutant protein itself was a substrate of autophagy. Starvation- and mTOR inhibition-induced autophagy led to the degradation of the P137L mutant protein, while preserving the wild-type and functional VCP/p97. Strikingly, similar to the P137L mutant, other IBMPFD-related VCP/p97 mutants, namely R93C and G157R mutants induced autophagosome and autolysosome formation; and G157R mutant formed aggregates that could be cleared by autophagy. Therefore, cellular phenotypes caused by P137L mutant expression were not isolated observations, and some other IBMPFD disease-related VCP/p97 mutations could lead to similar outcomes. Our results indicate that cellular mechanisms leading to IBMPFD disease may be various, and underline the importance of studying different disease-associated mutations in order to better understand human pathologies and tailor mutation-specific treatment strategies

    PTCH mutations and deletions in patients with typical nevoid basal cell carcinoma syndrome and in patients with a suspected genetic predisposition to basal cell carcinoma: a French study

    Get PDF
    The patched (PTCH) mutation rate in nevoid basal cell carcinoma syndrome (NBCCS) reported in various studies ranges from 40 to 80%. However, few studies have investigated the role of PTCH in clinical conditions suggesting an inherited predisposition to basal cell carcinoma (BCC), although it has been suggested that PTCH polymorphisms could predispose to multiple BCC (MBCC). In this study, we therefore performed an exhaustive analysis of PTCH (mutations detection and deletion analysis) in 17 patients with the full complement of criteria for NBCCS (14 sporadic and three familial cases), and in 48 patients suspected of having a genetic predisposition to BCC (MBCC and/or age at diagnosis ⩽40 years and/or familial BCC). Eleven new germline alterations of the PTCH gene were characterised in 12 out of 17 patients harbouring the full complement of criteria for the syndrome (70%). These were frameshift mutations in five patients, nonsense mutations in five patients, a small inframe deletion in one patient, and a large germline deletion in another patient. Only one missense mutation (G774R) was found, and this was in a patient affected with MBCC, but without any other NBCCS criterion. We therefore suggest that patients harbouring the full complement of NBCCS criteria should as a priority be screened for PTCH mutations by sequencing, followed by a deletion analysis if no mutation is detected. In other clinical situations that suggest genetic predisposition to BCC, germline mutations of PTCH are not common

    Nevoid basal cell carcinoma syndrome (Gorlin syndrome)

    Get PDF
    Nevoid basal cell carcinoma syndrome (NBCCS), also known as Gorlin syndrome, is a hereditary condition characterized by a wide range of developmental abnormalities and a predisposition to neoplasms

    Cystinosis: practical tools for diagnosis and treatment

    Get PDF
    Cystinosis is the major cause of inherited Fanconi syndrome, and should be suspected in young children with failure to thrive and signs of renal proximal tubular damage. The diagnosis can be missed in infants, because not all signs of renal Fanconi syndrome are present during the first months of life. In older patients cystinosis can mimic idiopathic nephrotic syndrome due to focal and segmental glomerulosclerosis. Measuring elevated white blood cell cystine content is the corner stone for the diagnosis. The diagnosis is confirmed by molecular analysis of the cystinosin gene. Corneal cystine crystals are invariably present in all patients with cystinosis after the age of 1 year. Treatment with the cystine depleting drug cysteamine should be initiated as soon as possible and continued lifelong to prolong renal function survival and protect extra-renal organs. This educational feature provides practical tools for the diagnosis and treatment of cystinosis

    Extra-Intestinal Manifestations of Familial Adenomatous Polyposis

    Get PDF
    Familial adenomatous polyposis (FAP) is an autosomal dominantly inherited disorder, which results from a germ line mutation in the APC (adenomatous polyposis coli) gene. FAP is characterized by the formation of hundreds to thousands of colorectal adenomatous polyps. Although the development of colorectal cancer stands out as the most prevalent complication, FAP is a multisystem disorder of growth. This means, it is comparable to other diseases such as the MEN syndromes, Von Hippel-Lindau disease and neurofibromatosis. However, the incidence of many of its clinical features is much lower. Therefore, a specialized multidisciplinary approach to optimize health care—common for other disorders—is not usually taken for FAP patients. Thus, clinicians that care for and counsel members of high-risk families should have familiarity with all the extra-intestinal manifestations of this syndrome. FAP-related complications, for which medical attention is essential, are not rare and their estimated lifetime risk presumably exceeds 30%. Affected individuals can develop thyroid and pancreatic cancer, hepatoblastomas, CNS tumors (especially medulloblastomas), and various benign tumors such as adrenal adenomas, osteomas, desmoid tumors and dental abnormalities. Due to improved longevity, as a result of better prevention of colorectal cancer, the risk of these clinical problems will further increase

    The genetics and neuropathology of frontotemporal lobar degeneration

    Get PDF
    Frontotemporal lobar degeneration (FTLD) is a heterogeneous group of disorders characterized by disturbances of behavior and personality and different types of language impairment with or without concomitant features of motor neuron disease or parkinsonism. FTLD is characterized by atrophy of the frontal and anterior temporal brain lobes. Detailed neuropathological studies have elicited proteinopathies defined by inclusions of hyperphosphorylated microtubule-associated protein tau, TAR DNA-binding protein TDP-43, fused-in-sarcoma or yet unidentified proteins in affected brain regions. Rather than the type of proteinopathy, the site of neurodegeneration correlates relatively well with the clinical presentation of FTLD. Molecular genetic studies identified five disease genes, of which the gene encoding the tau protein (MAPT), the growth factor precursor gene granulin (GRN), and C9orf72 with unknown function are most frequently mutated. Rare mutations were also identified in the genes encoding valosin-containing protein (VCP) and charged multivesicular body protein 2B (CHMP2B). These genes are good markers to distinguish underlying neuropathological phenotypes. Due to the complex landscape of FTLD diseases, combined characterization of clinical, imaging, biological and genetic biomarkers is essential to establish a detailed diagnosis. Although major progress has been made in FTLD research in recent years, further studies are needed to completely map out and correlate the clinical, pathological and genetic entities, and to understand the underlying disease mechanisms. In this review, we summarize the current state of the rapidly progressing field of genetic, neuropathological and clinical research of this intriguing condition
    corecore