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Abstract Frontotemporal lobar degeneration (FTLD) is a

heterogeneous group of disorders characterized by distur-

bances of behavior and personality and different types of

language impairment with or without concomitant features

of motor neuron disease or parkinsonism. FTLD is charac-

terized by atrophy of the frontal and anterior temporal brain

lobes. Detailed neuropathological studies have elicited pro-

teinopathies defined by inclusions of hyperphosphorylated

microtubule-associated protein tau, TAR DNA-binding

protein TDP-43, fused-in-sarcoma or yet unidentified pro-

teins in affected brain regions. Rather than the type of

proteinopathy, the site of neurodegeneration correlates

relatively well with the clinical presentation of FTLD.

Molecular genetic studies identified five disease genes, of

which the gene encoding the tau protein (MAPT), the growth

factor precursor gene granulin (GRN), and C9orf72 with

unknown function are most frequently mutated. Rare muta-

tions were also identified in the genes encoding valosin-

containing protein (VCP) and charged multivesicular body

protein 2B (CHMP2B). These genes are good markers to

distinguish underlying neuropathological phenotypes. Due

to the complex landscape of FTLD diseases, combined

characterization of clinical, imaging, biological and genetic

biomarkers is essential to establish a detailed diagnosis.

Although major progress has been made in FTLD research in

recent years, further studies are needed to completely map

out and correlate the clinical, pathological and genetic

entities, and to understand the underlying disease mecha-

nisms. In this review, we summarize the current state of the

rapidly progressing field of genetic, neuropathological and

clinical research of this intriguing condition.
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Introduction

History and significance

Frontotemporal lobar degeneration (FTLD) is an ana-

tomopathological descriptive term referring to a disorder

characterized by the relatively selective atrophy of the

frontal and anterior temporal lobes of the brain. Apart from

this commonality, FTLD is a clinically, genetically and
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pathologically heterogeneous group of disorders. Because

disease onset occurs before the age of 65 years in 75–80 %

of the patients, FTLD is considered a presenile dementia

[110, 122]. In the age group between 45 and 65 years, the

prevalence of FTLD has been estimated between 10 and 30

per 100,000 [11, 136], but large-scale epidemiological

studies are lacking. FTLD is the second most common

form of early-onset dementia, after Alzheimer’s disease

(AD) [19].

FTLD has a markedly strong familial component:

30–50 % of the FTLD patients report at least one relative

with similar symptomatology, and in 10–23 %, the disease

segregates in the family with an autosomal dominant

inheritance pattern [56, 57]. Five disease genes have been

identified to cause FTLD. Further, FTLD is associated with

genes that typically cause a clinical picture of amyotrophic

lateral sclerosis (ALS), the most common type of motor

neuron disease (MND). Common genetic, clinical and

pathological characteristics between FTLD and ALS are

manifold. In this era of rapidly evolving insights into the

pathophysiology of this challenging group of diseases,

the present review aims to provide a timely picture of the

clinical, neuropathological and genetic findings in FTLD

and the correlations between them.

Clinical phenotypes of FTLD and related conditions

FTLD can manifest as two clinically recognized subtypes

based on the presenting and predominant features of either

behavioral and personality changes, or language distur-

bances. The behavioral variant of frontotemporal dementia

(bvFTD) is characterized by severe changes in behavior and

personality such as disinhibition, apathy, loss of empathy, or

stereotypic behavior, leading to a loss of social competence

[73, 109, 127, 151]. Executive functions are impaired, while

at least in the initial stages of the disease, memory and per-

ceptuospatial skills are well preserved. As the differential

diagnosis in patients with psychiatric disturbances or AD is

not always straightforward, the ‘International Behavioral

Variant FTD Criteria Consortium’ developed international

consensus criteria for bvFTD. According to these criteria,

subclassifications were made in possible bvFTD defined

by clinical criteria, probable bvFTD supported by neuro-

imaging data, and definite bvFTD confirmation by neuro-

pathological evidence or a pathogenic mutation [127].

bvFTD accounts for more than 50 % of the FTLD patients.

The onset of bvFTD is typically before the age of 65 years,

with an average onset age of 58 years [71, 73].

If the patient presents with language difficulties, a

diagnosis of primary progressive aphasia (PPA) is made.

PPA was originally further categorized into progressive

nonfluent aphasia (PNFA) and semantic dementia (SD)

[73]. However, the clinical picture of a number of PPA

patients did not fit either diagnosis, which led to the

description of the third variant, logopenic progressive

aphasia (LPA). The lack of clear definitions of the three

subtypes led in 2011 to new recommendations for the

subclassification of PPA into nonfluent/agrammatic variant

PPA (the former PNFA), semantic variant PPA (the former

SD) and the logopenic variant PPA (also known as LPA)

[59]. Nonfluent/agrammatic variant PPA or PNFA is

characterized by effortful speech and grammatical error-

making, with relatively preserved language comprehen-

sion. Apraxia of speech (AOS) or orofacial apraxia is

frequently accompanying the aphasia [73]. PNFA is the

second most prevalent presentation of FTLD, accounting

for a large 25 % [71]. Semantic variant PPA or SD presents

with impaired comprehension and conceptual knowledge

with concomitant development of anomia, while speech

production is spared [59, 109, 151]. SD presents in

20–25 % of the FTLD patients [71]. LPA is mostly asso-

ciated with a neuropathological diagnosis of AD [121] and

is not considered part of the FTLD group of disorders.

Based on the evidence supporting the diagnosis of PPA, the

label ‘‘possible’’ (clinical features), ‘‘probable’’ (clinical

findings in combination with neuro-imaging) and ‘‘defi-

nite’’ (after post-mortem examination or when a gene

mutation is known) are provided [59, 125].

Overlap between the clinical syndromes of bvFTD, PNFA

and SD can occur during the progression of the disease and

clinical distinction between them is often complicated in

advanced disease stages. The median survival from the

onset of symptoms is 6–11 years, independent of age at

onset or gender [63, 130]. While some studies show no

differences in survival rates among the clinical subtypes of

FTLD, other studies suggested shorter survival in bvFTD and

longest survival in SD [63, 71, 115, 130]. The gender distri-

butionofFTLDappears tovaryby theclinical syndrome,with

a male preponderance in the behavioral and personality

disorders and a female predominance in the language

disorders [71].

The comorbidity of ALS with behavior alterations,

cognitive impairment or dementia has been noticed since

the early 20th century [91, 119, 129]. FTLD may precede,

follow or coincide with the onset of motor symptoms [172].

In one of the largest studies on neuropsychological dis-

turbances in ALS, 47 % of the patients showed some

degree of dysfunction in frontal lobe tests, which was in

15 % sufficient for a diagnosis of FTLD [129]. Conversely,

motor neuron dysfunction has been described in 40 % of

the FTLD patients, and the diagnostic criteria for ALS

were met in 15 %, referred to as FTLD-ALS [18, 90].

FTLD-ALS patients have a poor prognosis with a mean

survival of 2–3 years from the onset of first symptoms [63,

73]. The reported heritability of FTLD-ALS is high:

approximately 50 % is considered familial [56, 132, 141].
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Apart from MND, other conditions are closely related to

FTLD, including progressive supranuclear palsy (PSP)

syndromes, corticobasal syndrome (CBS), FTD with par-

kinsonism (FTDP) and argyrophilic grain disease (AGD).

The most common clinical syndromes are PSP syndromes

with a prevalence of 3.1 per 100,000, followed by CBS

with a prevalence of less than 1 per 100,000 [41]. PSP was

originally described as a clinical syndrome characterized

by extrapyramidal symptoms and a progressive dementia.

Patients present with a symmetrical, akinetic rigid parkin-

sonism, severe postural instability and supranuclear

ophthalmoplegia. Most patients develop the disease at

middle or late age (75 ± 8 years) and death occurs on

average 7 years later [35]. In more recent years, the spec-

trum of PSP syndromes has been extended to not only

include classical PSP syndrome, termed the Richardson’s

type, but also PSP-parkinsonism, which presents as a more

asymmetrical disorder resembling Parkinson’s disease

[177] and the syndrome of pure akinesia characterized by

freezing of gait and speech dysfluencies as most prominent

features [34, 177]. CBS most frequently presents as a

combined clinical picture, consisting of a focal cortical

deficit (e.g. limb apraxia, aphasia, frontal lobe syndrome,

alien limb phenomenon, cortical sensory loss) and a pro-

gressive asymmetrical movement disorder (myoclonus,

dystonia, tremor). In a later stage of the disease, patients

often develop cognitive dysfunctions, sometimes in com-

bination with a frontotemporal behavioral syndrome. The

term FTDP-17 was defined in 1997 [47, 153], describing

13 families presenting with a clinical syndrome of auto-

somal dominant disinhibition, dementia, parkinsonism, and

amyotrophy and showing genetic linkage to chromosome

17. Nowadays, we are able to differentiate mutations in the

MAPT or to the GRN gene, both located on chromosome

17. The clinical picture resembles bvFTD, while cognitive

deficits include anterograde memory dysfunction in an

initial stage, later accompanied by progressive deteriora-

tion of visuospatial function, orientation and global

memory. Eventually, mutism occurs. Motor signs typically

include the development of symmetrical bradykinesia

without resting tremor, in combination with axial rigidity

and postural instability. There is poor or no effect of

levodopa therapy. Other motor symptoms include vertical

gaze palsy, dystonia, upper and lower motor dysfunction,

eye lid apraxia and dysphagia [35]. The onset age can

range from the early 20s to the late 70s, with an average of

50 years. The clinical early presentation of AGD is similar

to AD but disease progression is less aggressive, with

patients having a clinical picture resembling mild cognitive

impairment (MCI) for many years [35, 44]. AGD accounts

for approximately 5 % of the neurodegenerative dementia

cases, with an increasing prevalence with advancing age

[35, 44]. As FTLD is a distinctive clinical, genetic and

neuropathological entity, it should be noted that an FTD

phenotype can also be caused by underlying AD pathology

(i.e. frontal variant AD). Similarly, a clinical phenotype of

CBS can be caused by AD pathology [61].

Neuropathology of FTLD and cliniconeuropathological

correlations

The FTLD brain is by definition characterized by diverse

patterns of atrophy of frontal and anterior temporal lobes.

Different patterns of atrophy have been described and a

strong correlation with clinical phenotypes was found. A

relatively symmetrical atrophy of the frontal lobes, insula,

anterior cingulate and anterior temporal lobes is associated

with bvFTD. An asymmetric atrophy of the left (linguistic

dominant) anterior inferior temporal lobe gives rise to SD.

Patients with an asymmetrical atrophy of the right anterior

temporal lobe (right-sided SD) present with a behavioral

syndrome similar to bvFTD. These patients develop emo-

tional bluntness and, in some cases, loss of interest and

bizarre affect. As the atrophy progresses, prosopagnosia

and associative agnosia are often seen in combination with

eating disorders and rigid, compulsive behavior. In patients

with PNFA, an asymmetric atrophy involving the anterior

perisylvian cortex, mainly of the dominant hemisphere, is

seen [59, 122].

On microscopic examination, the neuronal loss and

astrocytosis are seen in cortices of atrophied frontal and

temporal lobes. In addition, FTLD is a proteinopathy

characterized by the presence of abnormal, ubiquitinated

protein inclusions in cytoplasm or nuclei of neuronal

and glial cells. Adjunctive immunohistochemistry allows

subcategorization of these disorders into specific protein-

opathies based on the major constituent of the inclusions.

From a historic perspective, two pathological categories of

FTLD were initially made [20, 95, 103]: in a first group of

patients, the disease presented neurons and glial cells

containing inclusions of hyperphosphorylated tau protein,

therefore referred to as FTLD-tau [97], including Pick’s

disease (PiD). However, more than 50 % of the FTLD

patients presented with tau-negative ubiquitin staining

inclusions at the time of unknown composition, therefore

referred to as FTLD-Ubiquitin or FTLD-U [90, 95]. In

80–95 % [94, 131] of this group, inclusions were later

found to be composed of transactive response (TAR) DNA-

binding protein 43 (TDP-43) [111], thus referred to as

FTLD-TDP [95, 112]. A considerable number of TDP-

43-negative FTLD-U cases had inclusions of fused-

in-sarcoma protein (FUS), thus referred to as FTLD-FUS

[96]. However, in a small number of FTLD-U patients, the

inclusion protein remains unknown until today. This group

is referred to as FTLD-ubiquitin proteasome system

(FTLD-UPS) [36, 95].
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Correlations were noted between the clinical FTLD

subtypes and underlying proteinopathies, but a strict one-

to-one relationship is lacking. An FTLD-FUS proteinopa-

thy is invariantly associated with a clinical diagnosis of

bvFTD, either with or without the signs of MND. However,

bvFTD is also associated with FTLD-tau and FTLD-TDP

(Fig. 1). Although PNFA and SD are both associated with

FTLD-tau and FTLD-TDP, PNFA is commonly associated

with tau pathology, especially when AOS or orofacial

apraxia is present. On the other hand, SD is, in most cases,

linked with TDP-43-immunoreactive pathology, although

tau pathology is sometimes observed. When SD is associ-

ated with FTLD-tau, patients often present with acalculia

[122]. In right-sided SD, the underlying neuropathology is

mostly a TDP-43 proteinopathy. Tau pathology was also

associated with FTD with parkinsonism, PSP syndromes,

CBS and AGD. Similarly, TDP-43 and FUS proteinopa-

thies are also commonly found in MND with or without

FTLD.

Molecular genetics

Positive family history is observed in 40–50 % of the

FTLD patients [85] and at least 10–50 % of the patients are

associated with an inheritance pattern compatible with a

highly penetrant Mendelian mutation [32, 107]. When

considering clinical FTLD subtypes, family history is most

prominent in bvFTD (45 %), especially when concomitant

symptoms of MND are present (60 %), while SD appeared

to be the least hereditary FTLD subtype (\20 %) [56].

Molecular genetic studies have identified five genes that,

when mutated, cause FTLD: C9orf72, granulin (GRN), the

microtubule associated protein tau gene (MAPT), the gene

encoding valosin-containing protein (VCP) and the charged

multivesicular body protein 2B (CHMP2B) [30]. Mutations

in common ALS genes TARDBP and FUS (see ALS review

in this issue), in rare cases, present clinically with FTLD

[8, 171], even without the observed signs of MND (e.g.

[68]). The relative mutation frequencies of these genes vary

substantially among different populations due to founder

effects resulting in a regionally high occurrence of one or a

limited number of specific mutations. Also, reported

mutation frequencies vary significantly between studies,

depending on the method of patient ascertainment (e.g.

population-based vs. hospital-based) and employed inclu-

sion criteria (e.g. clinical vs. pathological diagnosis,

familial vs. non-familial or both). However, in general

terms, mutations in C9orf72, GRN and MAPT are the most

common and together explain at least 17 % of the familial

FTLD (Table 2). In two genetically fully documented

FTLD series, summed C9orf72, GRN and MAPT mutation

frequencies were 32 [33] and 40 % [55]. Mutations in VCP

and CHMP2B are rare, each explaining less than 1 % of the

familial FTLD.

As the mutant gene is initiating the biological disease

processes underlying the neuropathological changes, a

relatively strict correlation between the affected gene and

associated neuropathology is observed (Fig. 1). However,

due to the lack of a tight correlation between the type

of pathology and the clinical manifestation thereof, the

Fig. 1 Diagram illustrating the

clinical, genetic and

neuropathological correlations

in FTLD. The gray background
of the genetics box represents

the genetically unexplained

fraction in FTLD cases overall

(as compared to familial cases

in Table 2)
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correlation between the disease gene and associated clini-

cal phenotype is limited.

In addition to the highly penetrant Mendelian FTLD

genes, few susceptibility genes are reported. From the

Mendelian genes, MAPT appears to also harbor a genetic

risk to develop tauopathies [6, 64]. The only systematic

genome-wide association study in FTLD reported until

today identified TMEM106B at chromosome 7p21 as a risk

factor for FTLD-TDP [165].

Autosomal dominant genes

MAPT

The first significant genetic linkage found in FTLD fami-

lies was with markers at chromosome 17q21 [69, 120,

154]. Linkage was described in 13 families in which a

consensus clinical syndrome of autosomal dominant dis-

inhibition, dementia, parkinsonism, and amyotrophy was

found, termed FTDP-17 [47]. As tau was implicated in

FTLD pathology and the chromosomal location of MAPT

coincided with the linkage at chromosome 17, MAPT was

the most obvious candidate gene and mutations were

identified in FTDP-17 families [69]. Today, 44 different

MAPT mutations are reported in 134 FTLD families [30]

(Table 2). The mutations are mainly clustered in the five

most 30 exons from 9 to 13, encoding the four microtubule-

binding domains of tau. In normal brain, the tau protein

occurs as six isoforms of which three contain three

microtubule-binding domains (3R tau) and three contain

four microtubule-binding domains (4R tau) [41]. A sub-

stantial number of mutations were located in the intron 10

splice donor site or intronic splice regulatory elements

resulting in aberrant splicing of exon 10. Interestingly,

MAPT exon 10 encodes one of the microtubule-binding

domains and the mutations affecting the splicing of this

exon result in aberrant ratios of 3R and 4R tau [38]. Syn-

onymous and nonsynonymous mutations in exon 10 were

shown to locate in exonic splice regulatory elements

resulting in similar aberrant splicing effects [39]. In addi-

tion, missense mutations are identified that affect the amino

acid sequence of the microtubule-binding domains. Muta-

tions affect the binding of tau to tubulin either due to an

increased expression of 4R tau relative to 3R tau isoforms,

or due to the altered binding properties of mutant tau

protein [123]. The mutations thus disturb the subtle equi-

librium between cytoskeletal assembly and disassembly

affecting neuronal plasticity and axonal transport across the

microtubules. In addition, coding MAPT mutations

increase the tendency of tau to form neurotoxic aggregates.

Mutations in exon 10 lead to 4R tau in both neurons and

glia, while mutations outside exon 10 lead to neuronal

accumulation of 3R tau and 4R tau [133]. Except for

p.P301L and IVS10?16C[T that occur in 32 and 27

families, respectively, MAPT mutations are rare and seen in

single families.

FTLD due to MAPT mutations is invariantly of the

pathological type FTLD-tau, including PiD. In PiD

pathology, the cardinal microscopic features are neuronal

intracytoplasmatic spheroid tau-containing Pick bodies in

the granular neurons of the dentate gyrus and in pyramidal

neurons of the hippocampus and affected neocortical

regions (Fig. 2a–c). Pick bodies, mainly localized in cor-

tical layers II and III, and to a lesser extent also in deeper

layers [41], specifically accumulate insoluble 3R tau [35,

41, 48, 73]. In addition to FTLD-tau, MAPT mutations

have also been associated with other tauopathies including

PSP, CBS, FTD with parkinsonism and the rarely seen

AGD [73, 79]. The typical tau lesions in PSP are globose

neurofibrillary tangles (NFT) found in neurons of the

subcortical nuclei [35, 41, 73]. In CBS patients, heteroge-

neous tau-immunoreactive inclusions are also found in

cortical neurons and neurons in substantia nigra and locus

coeruleus. Other characteristic hallmarks are astrocytic

plaques containing hyperphosphorylated tau and oligo-

dendroglial inclusions [35, 41]. The neuropathological

hallmark of FTD with parkinsonism is the combination of

tau-immunoreactive aggregates in neurons, astrocytes and

oligodendroglial cells, throughout cortex, deep gray and

subcortical white matter [35, 41]. Often, these lesions are

already extensive in early and intermediate stages of the

disease. In AGD, on external macroscopic examination,

mild diffuse cortical atrophy is seen, with a predilection of

the ambient gyrus [35, 44]. The histopathological hallmark

is the presence of argyrophilic grains (ArG). These ArG are

present throughout the neuropil of cortical and subcortical

structures. Lesions are initially present in the amygdala and

temporal allocortex, spreading toward temporal neocortex

as disease progresses.

FTLD-tau is mainly associated with bvFTD, however,

forms of PPA are also reported [105]. Symptoms of MND

are rare. On average, FTLD-tau is characterized by the

earliest onset age in the FTLD syndromes, although the

range of onset ages is large and strongly overlapping with

other types of FTLD. A literature survey of 228 FTLD

patients carrying a MAPT mutation demonstrated that the

average onset age was 48 ± 10 years with a disease

duration of 9 ± 5.5 years [27].

GRN

In some families linked to chromosome 17q21, extensive

mutation analyses could not identify a MAPT mutation. It

became apparent that, in FTLD families negative for

MAPT mutations, the characteristic pathological inclusions
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were of the tau-negative, ubiquitin-positive types suggest-

ing that mutations in another gene at the same genetic locus

were causing this FTLD-U type of disease. Extensive

mutation analyses of other positional candidate genes

identified mutation in the nearby GRN gene [7, 28]. To

date, 69 different GRN mutations have been reported in

231 families [30] (Table 2). GRN mutations are distributed

across the complete coding region and splice sites of the

gene. They are loss-of-function mutations leading to

reduced functional protein and resulting in haplo-insuffi-

ciency [52]. Most mutations produce null alleles as a result

of mRNA decay mediated by a nonsense or frameshift

mutation [7, 28, 50], but other mechanisms including gene

deletion [53] and defective protein sorting [143] are

described as well. GRN encodes progranulin, a ubiqui-

tously expressed growth factor precursor consisting of 7.5

granulin peptides [1]. Both full-length progranulin and the

granulin peptides are implicated in a wide range of bio-

logical processes such as inflammation and wound repair,

as well as in pathological conditions including tumori-

genesis [62]. Although their roles in the CNS are not well

established, in vitro and in vivo studies suggest a neuro-

trophic function involved in neuronal survival and neurite

outgrowth [2, 138, 164, 178].

The effect of GRN missense mutations on reduced

function and resulting phenotype is not straightforward:

some compromise protein stability or cellular sorting,

which might result in complete loss of function and lead to

haplo-insufficiency, thereby behaving as highly penetrant

FTLD mutations. Clear examples of loss-of-function

(LOF) missense mutations are those disrupting the signal

peptide [104, 143] or affecting the disulfide bonds control-

ling the characteristic granulin fold [166]. Other missense

mutations might only partially compromise function and

behave as risk alleles [29]. GRN missense mutations have

been implicated in AD risk [15, 150] and survival in ALS

[148]. A useful measure of the reduced GRN function,

discriminating between pathogenic and neutral missense

mutations, is the granulin protein level in cerebrospinal

fluid [22, 164], plasma [21, 45] and serum [149], although

the correlation between protein expression level and asso-

ciated disease risk is poorly studied.

All GRN-associated FTLD patients have a FTLD-TDP

proteinopathy [4, 117]. The presence of TDP-43 positive

inclusions is invariably associated with a decreased phys-

iologically normal nuclear staining [36, 95]. Recent

neuropathological studies elicited four FTLD-TDP sub-

types A to D based on the cortical distribution, intracellular

location and morphology of the inclusions [99] (Table 1;

Fig. 3). Based on the large clinicopathological studies, the

most common FTLD-TDP subtype is type A accounting for

41–49 % of the cases, followed by type B with 28–34 %

and type C with 17–25 %, while type D is rare [19, 73]. All

GRN mutations are associated with FTLD-TDP type A

(Fig. 3a–c), and in turn mutations in GRN explain about

40 % of these cases [133]. In FTLD-TDP type A, many

neuronal cytoplasmic inclusions (NCI), short dystrophic

neurites (DN) and some lentiform neuronal intranuclear

Fig. 2 FTLD-tau pathology in brain sections of a Pick disease patient

with bvFTD after immunostaining with AT8 antibody. a Frontal cortex

(F-cx), b temporal neocortex (T-cx), c hippocampus. Arrowheads

indicate the characteristic Pick bodies representing neuronal intracy-

toplasmatic spheroid tau inclusions
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inclusions (NII) are observed in layer II of the affected

neocortex. NCI in the dentate granular gyrus of the hip-

pocampus are variable in number [99].

Despite the fact that haplo-insufficiency is the common

disease mechanism in all patients carrying a GRN mutation,

the associated clinical phenotype is variable, including

bvFTD and PNFA [88, 125]. Parkinsonian symptoms are

often observed, but motor neuron symptoms are rare [23].

Sporadically, clinical diagnoses of related neurodegenera-

tive diseases including AD and parkinsonian disorders have

been associated with GRN mutations [14, 21, 22, 88]. A

literature survey of 183 patients with GRN-associated

FTLD demonstrated that the onset age was on average

61 ± 9 years and 13 years later than in MAPT mutation

carriers although as in FTLD-tau, onset ages are highly

variable, ranging from 35 to 87 years [29, 30]. A consid-

erable age-dependent penetrance was described with

50–60 % of the mutation carriers being affected by the age

of 60 years and 90–95 % by the age of 70 years [50, 125].

Consequently, family history is not always apparent and

GRN mutations are found in a significant number of FTLD

patients classified as being sporadic [87].

C9orf72

Genetic linkage [12, 54, 89, 93, 102, 162, 163] and asso-

ciation [83, 144, 170] studies in FTLD-TDP, FTLD-ALS

and ALS suggested a common genetic defect located at

chromosome 9p21 in the complete spectrum of diseases in

the FTLD–MND complex [55]. Extensive mutation anal-

yses of positional candidate genes identified an expanded

noncoding G4C2 hexanucleotide repeat in C9orf72

explaining linkage and association [33, 55, 128]. In the

normal population, the size of the G4C2 repeat ranges from

3 to 25 units, which is expanded to at least 60 units in

patients [33, 55, 128]. Accurate size estimations of the

expanded repeat in a substantial number of carriers are

lacking, as the commonly used detection method based on

the repeat-primed PCR does not differentiate repeat sizes

[60 units. In one study, Southern blot analyses of a limited

number of repeat expansion carriers estimated repeat sizes

between 700 and 1,600 units [33]. In an extended study,

pathological C9orf72 repeat expansions were observed in

11.4 % of the 1,381 FTLD patients of European origin,

rising to 24.8 % in familial patients [101]. The same study

reported a C9orf72 repeat expansion frequency of 6.0 % in

sporadic FTLD. Whether this high mutation frequency in

patients without family history of disease is explained by a

high de novo repeat expansion rate remains to be deter-

mined, but a preliminary study suggests that this is more

likely explained by incomplete penetrance [116].

C9orf72 encodes a ubiquitously expressed protein of

unknown function. It is expressed as three major transcripts

[33] and the expanded G4C2 repeat is located in the

proximal regulatory region of C9orf72 [55], upstream of

one and in the first intron of the two other transcripts.

Repeat expansion results in near complete loss of expres-

sion of the major gene transcripts [33, 55, 128]. In addition,

accumulation of transcripts harboring the expanded G4C2

repeat in nuclear RNA foci was described [33] although

this was not replicated in another study [146]. Whether

haplo-insufficiency due to the loss of transcription, RNA

toxicity due to sequestration of RNA-binding proteins in

RNA foci, and/or yet unidentified mechanisms are con-

tributing to disease, needs further investigation.

Before the identification of the C9orf72 repeat expansions,

FTLD linked to chromosome 9p21 was neuropathologically

characterized as being of the TDP-43 proteinopathy type B.

The pathological characteristics of FTLD-TDP type B

(Fig. 3d–f) include NCI throughout the entire cortical

Table 1 Major genetic causes, clinical phenotypes and neuropathological characteristics of FTLD-TDP subtypes

Subtypes of

FTLD-TDP

Associated gene

mutationsa
Associated clinical

phenotype

Neuropathological findings

Type A GRN, C9orf72 bvFTD (PNFA) Many NCI and DN in superficial cortical layers (layer II)

NII in superficial cortical layers GCI

Type B C9orf72 FTD-MND bvFTD NCI throughout the entire cortical thickness

NCI in hypoglossal nucleus and in ventral horn of the spinal cord

Pre-inclusions

Type C SD (bvFTD) Long DN in superficial cortical layers

Few NCI and NII

Type D VCP IBMPFD Many NII and DN throughout the entire cortical thickness

Few NCI

bvFTD behavioral variant frontotemporal dementia, PNFA primary nonfluent aphasia, FTD-MND frontotemporal dementia with motor neuron

disease, SD semantic dementia, IBMPFD inclusion body myopathy, Paget disease of bone and frontotemporal dementia, NCI neuronal cyto-

plasmic inclusions, NII neuronal intranuclear inclusions, GCI glial cytoplasmic inclusions, DN dystrophic neurites
a See Table 2 for full gene names
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thickness [99]. NCI are seen in the granular cells of the

dentate gyrus of the hippocampus. In some patients, NCI

can also be found in the motor neurons of the hypoglossal

nuclei and ventral horn of the spinal cord. Next to these

TDP-43 inclusions, granular ‘‘pre’’-inclusions are seen in

affected cortical regions [36]. Ubiquitin staining of these

pre-inclusions is negative. Furthermore, GCI are often seen

in brain stem and spinal cord [36]. When the pathological

C9orf72 repeat expansion was identified, a larger number

patients with neuropathological documentation could be

attributed to this mutation, revealing a wider pathological

diversity. In a substantial number of patients, the number

and distribution of TDP-43 inclusions were more consis-

tent with a TDP-43 type A proteinopathy [107] or

intermediate to type B and type A proteinopathy [152].

Alternatively, the TDP-43 lesion load could be relatively

limited or even absent resulting in a pathological diagnosis

of FTLD-UPS in rare patients [55, 107]. Abundant p62

positive, TDP-43 negative NCI and rare NII were seen in

the pyramidal cell layer of the hippocampus and cerebellar

granular layer of most patients [3, 13]. Remarkably, sim-

ilar brain inclusions were also observed in ALS patients

without associated cognitive decline [158]. Interestingly,

the sequestosome 1 gene (SQSTM1) encoding the p62

protein harbors mutations leading to ALS [42] and Paget

disease of bone (PDB) [58]. Nevertheless, p62 immuno-

reactivity of the TDP-43-negative NCI might indicate

general staining of proteins of the ubiquitin–proteasome

system (UPS) for protein degradation, and the hallmark

protein of these aggregations remains to be identified. The

presence of DN and aggregates that were immunoreactive

to ubiquilin (UBQLN) in the molecular layer of the hip-

pocampus and throughout the neocortex was shown to be

highly specific for the C9orf72 mutation. Further, UBQLN

and p62 colocalized in NCI in the dentate gyrus of the

hippocampus and the granular layer of the cerebellum [13].

Staining of C9orf72 itself has until today remained

inconclusive. Polyclonal antibodies against both protein

isoforms showed a punctiform staining of synaptic termi-

nals in the CA4 region of the hippocampus in patients with

the C9orf72 mutation, but also in patients with AD and

controls [13, 33, 146].

C9orf72 repeat expansions clinically present with a

widely variable phenotype including FTLD, ALS or

FTLD-ALS [33, 55, 128]. With a mutation frequency of

30 % in FTLD-ALS [55], it is the only known common

disease gene in this condition. Independent of concomitant

ALS, FTLD is mostly of the behavioral type but patients

with PPA have been described [33, 55, 146, 152]. Reported

mean onset ages ranged between 55.3 and 58.3 years [33,

55, 146, 152] and are intermediate to onset ages in FTLD

associated with MAPT and GRN. Also here, a high vari-

ability in onset age was noted, even among patients of the

same family [33, 55]. Typical of repeat expansion diseases,

genetic anticipation has been suggested with decreasing

onset ages in younger generations [5, 24, 43, 156], and a

decrease in onset age of 7 years in the younger of two

subsequent generations has been suggested for ALS [24].

However, reports correlating sizes of the expanded repeat

allele and onset age are lacking.

VCP

VCP mutations were identified by linkage analysis studies in

autosomal dominant families with disabling muscle weak-

ness due to inclusion body myopathy (IBM), osteolytic bone

lesions consistent with PDB and FTLD (IBMPFD) [174].

Today, 17 different mutations have been identified in 41

independent families [30]. Incomplete penetrance was noted

for all three clinical characteristic features and patients may

present with classical FTLD.

VCP encodes a ubiquitously expressed member of a

family of ATPases associated with a wide range of cellular

functions through interactions with different adaptor pro-

teins [175]. All IBMPFD mutations reside at the interface

between the D1 ATPase and the N-domain of the CDC48-

like protein [175]. The best supported hypotheses of the

disease mechanism of VCP mutations are disturbed ubiq-

uitin–proteasome mediated protein degradation [31],

autophagy [74], or both [75]. FTLD patients with a VCP

mutation are associated with TDP-43 proteinopathy type D

[176] characterized by large numbers of NCI, NII and DN

in affected neocortical regions [99] (Fig. 3g–i). Some

inclusions also stain for VCP protein p97 [140].

Symptoms of FTLD due to a VCP mutation become

apparent in the mid-50s in 25–30 % of the IBMPFD

patients [76, 78, 174]. The incomplete penetrance of the

three clinical characteristics IBM, PDB and FTLD is

independent of the underlying mutation [76, 78, 108, 174].

However, in FTLD, VCP mutations are rare and represent

less than 1 % of the familial FTLD (Table 2). The most

Fig. 3 Different types of TDP-43 pathology in brains of patients with

GRN mutation, C9orf72 hexanucleotide repeat expansion and VCP

mutation after immunostaining with TDP-43 antibody. a–c TDP-43

type A pathology in a bvFTD patient of family DR8, carrying the

GRN IVS0 ? 5G[C mutation [14, 28]. Arrowhead, double arrow-
head and arrow show moderate NCI, DN and NII load, respectively,

in layer II of temporal (a) and frontal (b) neocortex. c Higher

magnification of NCI load in frontal cortex. d–f TDP-43 type B

pathology in a bvFTD patient with the C9orf72 hexanucleotide repeat

expansion [55]. Arrowhead and arrow show NCI and DN, respec-

tively, spread throughout the entire cortical thickness in frontal cortex

(d), temporal neocortex (e) and NCI in neostriatum (f, higher

magnification). g–i TDP-43 type D pathology in a bvFTD patient

carrying the VCP p.Arg159His mutation [168]. Note the extensive

NCI (arrowhead), NII (double arrowhead) and DN (arrow) in frontal

cortex (g), temporal neocortex (h, i, higher magnification)

b
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frequently reported FTLD subtypes are bvFTD and SD

[176]. Interestingly, a single study reported VCP mutations

in 1–2 % of the ALS patients in the absence of dementia

symptoms [72, 77].

CHMP2B

Linkage analyses in a large Danish FTLD family identified a

mutation in CHMP2B at chromosome 3p11.2 [147].

CHMP2B encodes a component of the heteromeric ESCRT-III

complex with functions in the endosomal–lysosomal and

the autophagic protein degradation pathway. The gene is

expressed in neurons of all major brain regions. Mutations

affect the C-terminal end of the protein due to aberrant

splicing.

CHMP2B mutations were associated with enlarged

vacuoles in cortical neurons in the frontal, temporal, pari-

etal and occipital cortices, due to impaired endosome–

lysosome fusion [160], and impairment of autophagy [25].

Ubiquitin-immunoreactive NCI do not stain for tau, TDP-

43 or FUS antibodies [65, 66], consistent with a patho-

logical classification of FTLD-UPS [100].

The general clinical diagnoses in patients of the large

Danish family corresponded to bvFTD, with early per-

sonality changes being the most common feature [60]. In

other patients, progressive aphasia involvement was

described, although no diagnosis of PNFA, SD or LPA

could be made. The aphasia is characterized by a reduction

in spontaneous speech sometimes leading to mutism and

preserved reading and repetition, most consistent with a

dynamic aphasia [70, 167]. The average onset age is

58 years, ranging between 46 and 65 years [60, 70]. The

CHMP2B p.Gln206His mutation was reported in two ALS

patients [25, 117]. Other missense mutations have been

described in patients with FTLD and/or MND; however,

their pathogenic nature remains unclear [30].

TARDBP and FUS

Mutations in the genes encoding the TDP-43 (TARDBP)

and fused-in-sarcoma (FUS) proteins are typically associ-

ated with ALS. TARDBP mutations were initially identified

[155] as a direct consequence of the identification of TDP-

43-derived protein species as the major constituent of the

aggregates found in upper and lower motor neurons of ALS

patients without SOD1 mutations and in FTLD-U [4, 117].

Whereas 5 % of the familial ALS patients have a TARDBP

mutation, mutations are rarely found in FTLD and FTD-

MND [8, 10].

TDP-43 is an RNA-binding protein that forms hetero-

geneous nuclear ribonucleoprotein complexes (hnRNP)

which function in RNA processing activities of several

cellular functions, including transcription, RNA splicing

and microRNA processing [16, 17, 118]. Missense muta-

tions were found in the C-terminal glycine-rich region

involved in protein–protein interactions [118]. Similar to

TARDBP, FUS is a member of the hnRNP family. Its

location at chromosome 16p11.2, made it an excellent

candidate gene to explain previously established genetic

linkage to the same chromosomal region in multiple ALS

families [137, 139] and mutation analyses of patients in

these and other families identified FUS mutations [80].

Although FUS represents an ALS gene, a mutational

analysis of the FUS gene in 122 patients with FTLD

revealed one novel p.Met254Val mutation in a patient with

pure bvFTD. The silico analysis of this missense mutation

predicted a pathogenic affect; however, the biologic rele-

vance of this mutation remains elusive [157, 171].

Interestingly, an accumulation of FUS protein in inclusion

bodies in neuronal cytoplasm and nucleus was associated

with three clinicopathological subtypes of FTLD, defined by

specific characteristics and location of NCI and NII [92,

97, 98, 114]. The first type is pathologically characterized

by severe atrophy of the caudate nucleus and the fronto-

temporal cortex. Compact, round to oval kidney-shaped

NCI and vermiform NII are localized in neocortex,

granule cells of the dentate gyrus, striatum and to a lesser

extent in globus pallidus, thalamus and periaqueductal

gray matter (Fig. 4a–c). The cerebellar cortex is never

affected. NCI and NII are not detected upon hematoxylin–

eosin staining and were not immunoreactive to interme-

diate neurofilament on IHC. This type of FUS pathology

is associated with a severe clinical syndrome resembling

bvFTD and is referred to as atypical FTLD-U (aFTLD-U)

[94]. Onset of disease is early, in 30s or 40s, and disease

duration is approximately 7 years [85]. aFTLD-U is the

most frequent FTLD-FUS subtype, accounting for 7–20 %

Table 2 Known FTLD genes

Gene

symbol

Chromosomal

location

Gene name Mutation

frequency (%)a

C9orf72 9p21.2 Chromosome 9 open

reading frame 72

14–48

GRN 17q21.32 Progranulin 3–26

MAPT 17q21.32 Microtubule-associated

protein tau

0–50

CHMP2B 3p11.2 Chromatin modifying

protein 2B

\1

VCP 9p13.3 Valosin-containing

protein

\1

Total [17

Chromosomal localization, gene symbol and name and estimated

mutation frequencies in familial FTLD patients
a Mutation frequency ranges were extracted from literature: C9orf72
[101], GRN [52], MAPT [123]
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of FTLD-U cases [94, 131, 142, 161]. The second FTLD-

FUS type is characterized by an asymmetric atrophy of

frontotemporal cortex and neostriatum, which is less

severe than in aFTLD-U [85]. NCI and NII stain with

FUS antibodies and to a lesser extent with antibodies

against type IV interfilaments, alpha-internexin and neu-

rofilaments. Therefore, this FTLD-FUS type is referred

to as neuronal intermediate filament inclusion disease

(NIFID) [94, 113]. Clinically NIFID patients usually

develop a rapidly evolving FTD syndrome, mostly bvFTD,

in combination with motor disorders such as parkinsonian

or motor neuron symptoms. Patients usually develop the

disease between 40 and 60 years of age, but earlier onset

has been described and disease duration is on average

approximately 3 years [85]. Considerable neuropathologi-

cal similarities exist between aFTLD-U and NIFID;

however, distinctive differences are observed. In NIFID,

FUS-immunoreactive NCI are more extensive and wide-

spread and are particularly numerous in CA1 and

subiculum, but not in the granular layer of the dentate

gyrus. The NCI morphology in NIFID patients is very

heterogeneous, varying from small round to oval or

tangle-like and annular shapes [73, 98, 100]. While less

FUS-immunoreactive inclusions are seen in aFTLD-U,

microscopic evaluation of aFTLD-U patients often shows

sclerosis of the hippocampus and subcortical structures, for

example, caudate nucleus, putamen and substantia nigra

[85]. Another difference could be the presence of the NII,

which are variably found in the hippocampus, but rare in

other brain regions of NIFID patients, and are far more

numerous in aFTLD-U patients [98, 100]. In the third

FTLD-FUS type, referred to as basophilic inclusion body

disease (BIBD), basophilic NCI staining with hematoxylin

and eosin are seen in the pontine nuclei and to a lesser

extent also in cerebral cortex [73, 98, 100, 106]. The

basophilic NCI show FUS immunoreactivity in frontal

cortex, basal ganglia and brain stem [98, 100]. BIBD pre-

sents with a clinical syndrome of early-onset ALS,

occasionally accompanied with bvFTD.

Susceptibility genes and risk loci

Compared with other complex neurodegenerative brain

diseases including AD, little is known about susceptibility

genes contributing to the risk of developing FTLD. This is

mainly due to the fact that the familial component in FTLD

is higher, and most research efforts aimed at the identifi-

cation of Mendelian gene mutations. Also, the clinical and

neuropathological heterogeneity of FTLD diseases have

hampered large-scale genetic association studies in homo-

geneous patient series. One exception is the genome-wide

association study in FTLD-TDP which has resulted in the

identification of TMEM106B at chromosome 7p21 [165].

Nevertheless, other susceptibility genes are to be expected

especially in the SD type of FTLD, in which family history

is much less pronounced than in bvFTD and PNFA [32].

Consistent with this observation, mutations in the known

Fig. 4 aFTLD-U patient with FUS pathology without any known mutation after immunostaining with FUS antibody. The arrowhead shows the

kidney-shaped NCI in affected neostriatum (a) and frontal cortex (b, c, higher magnification)
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FTLD genes were not associated with SD apart from a few

atypical cases. Interestingly, SD is associated with a dis-

tinct type C of TDP-43 pathology suggesting a distinct

disease mechanism [73]. FTLD-TDP type C is character-

ized by the presence of long DN localized in the superficial

cortical layers, mainly layer II. NCI and NII are rare or

absent compared to the other subtypes. Glial pathology is

rare [99]. Together, these observations might suggest that

SD is clinically, pathologically and genetically distinct

from other types of FTLD and might predominantly be

caused by the interaction of multiple yet unknown sus-

ceptibility genes.

TMEM106B was the only gene located in a single

linkage disequilibrium block at 7p21 in which multiple

single nucleotide polymorphisms (SNPs) were significantly

associated in a series of 515 FTLD-TDP patients, a finding

that was replicated in a second series of 89 FTLD-TDP

patients [165]. In subsequent studies, association could be

confirmed in one patient series [169], but not in another

series [135]. It was found that TMEM106B may also con-

tribute to the risk of developing FTLD in carriers of GRN

mutations [165] possibly by modulating the levels of GRN

secretion [26], however, other studies were not consistent

with these findings [84, 169]. Interestingly, TMEM106B

may also be associated with cognitive impairment in ALS

[173].

TMEM106B is a type 2 integral membrane protein with

unknown function, localizing to late endosomes and lyso-

somes [84]. The chromosome 7p21 risk haplotype was

reported to act through altered TMEM106B gene expres-

sion in brain [165], although this was not confirmed in

another study [169]. Interestingly, increased levels of

TMEM106B were also associated with the inhibition of

vacuolar H?-ATPases, a finding which may provide an

unexpected biochemical link to GRN, since this protein

is also strongly increased by the inhibition of vacuolar

H?-ATPases [84].

Apart from the systematic genome-wide association

study in FTLD-TDP [165], candidate gene association

studies have reported genetic association of FTLD with

other genes. In a series of pathologically confirmed FTLD-

U patients without GRN mutations, a common genetic

variant located in the 30-untranslated region (UTR) of GRN

in a binding site for miR-659 was identified as a major

susceptibility factor for FTLD-U [126]. A significant

reduction of GRN protein was observed in homozygous

T-allele carriers in vivo, suggesting a similar mode of

action as heterozygous loss-of-function mutations in GRN

[126]. Another variant in the first intron of GRN, poten-

tially affecting its expression, was also reported to be

associated with FTLD in another patient series [49]. Nev-

ertheless, other studies could not confirm the genetic risk

for FTLD associated with variants in GRN [134, 152].

Besides harboring Mendelian FTLD mutations, MAPT

was associated with risk of PSP [6, 64, 67], CBS [37, 67] and

PD [40, 159], but inconsistent results were found in FTLD

[9, 51, 86]. MAPT is represented in the human population as

two genetically distinct haplotypes H1 and H2 due to its

genomic location inside an inversion polymorphism [27].

The H1 haplotype is consistently overrepresented in 4R tau

disorders, PSP and CBD [6, 67]. In young PSP patients, the

risk was in part attributed to an SNP located in the large first

intron of MAPT, which potentially modulated tau expression

by modifying an LBP-1c/LSF/CP2 binding site. This tran-

scription factor was shown to regulate the expression of genes

in other neurodegenerative disorders [124]. A two-staged

genome-wide association study in 2,165 PSP patients con-

firmed and extended these findings, and further implicated

STX6, EIF2AK3, and MOBP in PSP [64]. Together, these

genes suggested roles of vesicle-membrane fusion at the

Golgi–endosomal interface, the endoplasmic reticulum

unfolded protein response, and a myelin structure in PSP. The

role of these genes in other tauopathies remains to be

investigated.

Summary

FTLD is a clinically, neuropathologically and genetically

heterogeneous group of disorders with plenty of overlaps

between the neurodegenerative mechanism and the clinical

expression thereof. As many clinical syndromes belonging

to FTLD tend to overlap especially in advanced disease

stages, e.g. SD and bvFTD in the TDP-43 proteinopathies,

aFTLD-U and NIFID in the FUS proteinopathies, identi-

fying the symptomatology of the patient at an early stage of

the disease course is crucial. In that respect, concerted

evaluation of clinical and pathological parameters is

helpful to obtain a precise diagnosis. The general clinical

presentation of FTLD concurs with macroscopic charac-

teristics of brain atrophy including localization, symmetry

and degree of atrophy. The underlying neuropathological

abnormalities, i.e. the proteinopathies are closely linked

with the disease mechanism and are important diagnostic

markers. Detailed information on the underlying neuropa-

thology thus provides useful insights for early diagnosis,

disease course prognosis and patient counseling and treat-

ment that could not be obtained by clinical evaluation

alone. Imaging, biological and genetic biomarkers are

valuable parameters to assess the underlying pathological

characteristics of the disease. Further research is needed to

elicit additional biomarkers to extend the ability to char-

acterize neuropathological causes of disease and to further

specify clinicopathological correlations.

Despite immense progress in defining neuropatho-

logical abnormalities in FTLD diseases, not all FTLD
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proteinopathies are fully characterized yet. In the small

group of FTLD-UPS patients, the protein accumulating in

pathological aggregates remains to be identified. Similarly,

not all mutations underlying the proteinopathies have been

identified. Especially in the TDP-43 proteinopathies, sev-

eral yet unknown Mendelian and susceptibility genes are

expected to play a role. Specifically for FTLD-TDP type C,

no gene has yet been identified. This type of proteinopathy

is associated with clinical SD, in which family history was

reported to be the least prominent and future genome-wide

association studies may provide further insights in the

genetics of this disease.
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