67 research outputs found

    The Mammoth Eagle: The CCC Era at Mammoth Cave

    Get PDF
    Today’s visitors to Mammoth Cave National Park sleep in cabins, drive over roads, and hike on miles of surface and cave trail constructed by the Civilian Conservation Corps (CCC) and others during the 1930s and 40s to create Mammoth Cave National Park. While this was without question a difficult transition for the residents and region, the work completed during this time is nothing short of monumental. Compiling information from archives, oral histories, and camp newspapers, as well as field observations, this presentation will shed light on several forgotten or misunderstood stories from this period in Mammoth Cave history. The creation of Mammoth Cave National Park also serves as an interesting case study regarding the rapid expansion of the National Park Service during this era and the competing interests between wilderness conservation and public access to recreation

    Adjacent single-stranded regions mediate processing of tRNA precursors by RNase E direct entry

    Get PDF
    The RNase E family is renowned for being central to the processing and decay of all types of RNA in many species of bacteria, as well as providing the first examples of endonucleases that can recognize 50 -monophosphorylated ends thereby increasing the efficiency of cleavage. However, there is increasing evidence that some transcripts can be cleaved efficiently by Escherichia coli RNase E via direct entry, i.e. in the absence of the recognition of a 50 -monophosphorylated end. Here, we provide biochemical evidence that direct entry is central to the processing of transfer RNA (tRNA) in E. coli, one of the core functions of RNase E, and show that it is mediated by specific unpaired regions that are adjacent, but not contiguous to segments cleaved by RNase E. In addition, we find that direct entry at a site on the 50 side of a tRNA precursor triggers a series of 50 -monophosphate-dependent cleavages. Consistent with a major role for direct entry in tRNA processing, we provide additional evidence that a 50 -monophosphate is not required to activate the catalysis step in cleavage. Other examples of tRNA precursors processed via direct entry are also provided. Thus, it appears increasingly that direct entry by RNase E has a major role in bacterial RNA metabolism

    Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish

    Get PDF
    International audienceHeightened concern over endocrine-disrupting chemicals is driven by the hypothesis that they could reduce reproductive success and affect wildlife populations, but there is little evidence for this expectation. The pharmaceutical ethynylestradiol (EE(2)) is a potent endocrine modulator and is present in the aquatic environment at biologically active concentrations. To investigate impacts on reproductive success and mechanisms of disruption, we exposed breeding populations (n = 12) of zebrafish (Danio rerio) over multiple generations to environmentally relevant concentrations of EE(2). Life-long exposure to 5 ng/L EE(2) in the F, generation caused a 56% reduction in fecundity and complete population failure with no fertilization. Conversely, the same level of exposure for up to 40 days in mature adults in the parental F(0) generation had no impact on reproductive success. Infertility in the F, generation after life-long exposure to 5 ng/L EE(2) was due to disturbed sexual differentiation, with males having no functional testes and either undifferentiated or intersex gonads. These F, males also showed a reduced vitellogenic response when compared with F(0) males, indicating an acclimation to EE(2) exposure. Deputation studies found only a partial recovery in reproductive capacity after 5 months. Significantly, even though the F(0) males lacked functional testes, they showed male-pattern reproductive behavior, inducing the spawning act and competing with healthy males to disrupt fertilization. Endocrine disruption is therefore likely to affect breeding dynamics and reproductive success in group-spawning fish. Our findings raise major concerns about the population-level impacts for wildlife of long-term exposure to low concentrations of estrogenic endocrine disruptors

    Histological and immunohistochemical investigation on ovarian development and plasma estradiol levels in the swordfish (<i>Xiphias gladius</i> L.)

    Get PDF
    The paper reports a histological and immunohistochemical description of oocyte growth and ultrastructural aspects of zona radiata (ZR) formation as well as the relationship between plasma estradiol-17&#x03B2;, (E2 ) levels and ovarian development in swordfish (Xiphias gladius L.) from the Mediterranean Sea. Ovaries were inactive during March to mid April; maturation occurred during late April to June and spawning in June and July. Zona radiata formation starts, as Pas positive material, in oocytes at the lipid stage. In this stage a deposit of electrondense material between oolemma and follicular cells appears. In the cortical alveoli stage and through the early vitellogenic stage, the deposition of a moderately electrondense material occurred on the inner side of the ZR. Finally, in late vitellogenic oocytes a third layer, made of microfibrillar material, appeared. The immunohistochemical analyses revealed that the initial internalisation of hepatic zona radiata proteins (Zrp) in the swordfish oocyte starts before the uptake of vitellogenin (Vtg) and that it is associated with the low previtellogenic E2 plasma levels, while a significant E2 increase in plasma is associated with the beginning of Vtg uptake. This would appear to confirm the hypothesis that the differential and sequential induction of zonagenesis and vitellogenesis may reflect a general feature of teleost oogenesi

    Social cues in the expression of sequential alternative reproductive tactics in young males of the peacock blenny, Solaria pavo

    Get PDF
    Phenotypic change in response to variation in environmental cues has been widely documented in fish. Transitions in social dominance, in particular, have been shown to induce a rapid switch in reproductive phenotypes in many species. However, this effect has been mainly studied in adults and focused on behavioural transitions. The way social cues constraint the phenotypic development of juveniles remains poorly studied in fish. We tested the importance of social dominance and density in the phenotypic development of juveniles of the peacock blenny Solaria pavo. This species shows sequential male alternative reproductive tactics. In the first breeding season males can reproduce as nest-holders or as parasitic males (female-mimicking), or postpone reproduction; from the following season afterwards all males reproduce as nest-holders. Parasitic males have relatively larger testes that lack a testicular gland, present in the testes of nest-holders. The testicular gland is the main source of androgens in the testes and accordingly nest-holders have higher circulating androgen levels. In addition, exogenous androgen administration to parasitic males promotes the development of secondary sexual characters (SSC) only present in nest-holders such as a head crest and an anal gland. We raised juveniles under a high or low-density treatment and monitored social interactions for 1 month. No significant effect of density on the development of juvenile males was detected. However, within each replicate, the relative body size of juvenile males at the beginning of the experiment determined their dominance status, with dominant males developing towards the nest-holder morphotype. Dominant males engaged in more nest defence behaviour, showed larger testicular glands, had higher levels of 11-ketotestosterone (11-KT) and testosterone (T) and developed more SSC, as compared to subordinate males. However, these effects of social dominance were moderated by body condition as only dominant males in good body condition developed SSC. The effect of social dominance and of the area of the testicular gland on the development of SSC was mediated by 11-KT and on the expression of nest defence behaviour by T. Interestingly, in spite of the higher androgen levels and more pronounced morphologic development of SSC in dominant individuals, gonadal development was independent of social dominance and most fish still had underdeveloped testis at the end of the experiment. In conclusion, social dominance promoted the development of the testicular gland, an increase in circulating androgen levels and the development of SSC, but did not promote testicular development. This suggests a dissociation of mechanisms underlying sexual maturation and the expression of male reproductive traits. This dissociation seems to be the key for the occurrence of female-mimicking males in this species, which are sexually mature despite lacking the SSC typical of nest-holdets. (C) 2012 Elsevier Inc. All rights reserved.R&D Units Plurianual Program (R&D unit) from the Portuguese Foundation for Science and Technology (FCT) [331/2001]; FCT [SFRH/BD/6502/2001]; [POCTI/BSE/38395/2001]; [PTDC/MAR/71351/2006]info:eu-repo/semantics/publishedVersio

    The Max b-HLH-LZ Can Transduce into Cells and Inhibit c-Myc Transcriptional Activities

    Get PDF
    The inhibition of the functions of c-Myc (endogenous and oncogenic) was recently shown to provide a spectacular therapeutic index in cancer mouse models, with complete tumor regression and minimal side-effects in normal tissues. This was achieved by the systemic and conditional expression of omomyc, the cDNA of a designed mutant of the b-HLH-LZ of c-Myc named Omomyc. The overall mode of action of Omomyc consists in the sequestration of Max and the concomitant competition of the Omomyc/Max complex with the endogenous c-Myc/Max heterodimer. This leads to the inhibition of the transactivation of Myc target genes involved in proliferation and metabolism. While this body of work has provided extraordinary insights to guide the future development of new cancer therapies that target c-Myc, Omomyc itself is not a therapeutic agent. In this context, we sought to exploit the use of a b-HLH-LZ to inhibit c-Myc in a cancer cell line in a more direct fashion. We demonstrate that the b-HLH-LZ domain of Max (Max*) behaves as a bona fide protein transduction domain (PTD) that can efficiently transduce across cellular membrane via through endocytosis and translocate to the nucleus. In addition, we show that the treatment of HeLa cells with Max* leads to a reduction of metabolism and proliferation rate. Accordingly, we observe a decrease of the population of HeLa cells in S phase, an accumulation in G1/G0 and the induction of apoptosis. In agreement with these phenotypic changes, we show by q-RT-PCR that the treatment of HeLa cells with Max* leads to the activation of the transcription c-Myc repressed genes as well as the repression of the expression of c-Myc activated genes. In addition to the novel discovery that the Max b-HLH-LZ is a PTD, our findings open up new avenues and strategies for the direct inhibition of c-Myc with b-HLH-LZ analogs
    corecore