20 research outputs found

    Synaptic Vesicle Exocytosis at the Dendritic Lobules of an Inhibitory Interneuron in the Mammalian Retina.

    Get PDF
    Ribbon synapses convey sustained and phasic excitatory drive within retinal microcircuits. However, the properties of retinal inhibitory synapses are less well known. AII-amacrine cells are interneurons in the retina that exhibit large glycinergic synapses at their dendritic lobular appendages. Using membrane capacitance measurements, we observe robust exocytosis elicited by the opening of L-type Ca(2+) channels located on the lobular appendages. Two pools of synaptic vesicles were detected: a small, rapidly releasable pool and a larger and more slowly releasable pool. Depending on the stimulus, either paired-pulse depression or facilitation could be elicited. During early postnatal maturation, the coupling of the exocytosis Ca(2+)-sensor to Ca(2+) channel becomes tighter. Light-evoked depolarizations of the AII-amacrine cell elicited exocytosis that was graded to light intensity. Our results suggest that AII-amacrine cell synapses are capable of providing both phasic and sustained inhibitory input to their postsynaptic partners without the benefit of synaptic ribbons

    Characteristics and Functions of α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionate Receptors Expressed in Mouse Pancreatic α-Cells

    No full text
    Pancreatic islet cells use neurotransmitters such as l-glutamate to regulate hormone secretion. We determined which cell types in mouse pancreatic islets express ionotropic glutamate receptor channels (iGluRs) and describe the detailed biophysical properties and physiological roles of these receptors. Currents through iGluRs and the resulting membrane depolarization were measured with patch-clamp methods. Ca2+ influx through voltage-gated Ca2+ channels and Ca2+-evoked exocytosis were detected by Ca2+ imaging and carbon-fiber microamperometry. Whereas iGluR2 glutamate receptor immunoreactivity was detected using specific antibodies in immunocytochemically identified mouse α- and β-cells, functional iGluRs were detected only in the α-cells. Fast application of l-glutamate to cells elicited rapidly activating and desensitizing inward currents at −60 mV. By functional criteria, the currents were identified as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. They were activated and desensitized by AMPA, and were activated only weakly by kainate. The desensitization by AMPA was inhibited by cyclothiazide, and the currents were blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Islet iGluRs showed nonselective cation permeability with a low Ca2+ permeability (PCa/PNa = 0.16). Activation of the AMPA receptors induced a sequence of cellular actions in α-cells: 1) depolarization of the membrane by 27 ± 3 mV, 2) rise in intracellular Ca2+ mainly mediated by voltage-gated Ca2+ channels activated during the membrane depolarization, and 3) increase of exocytosis by the Ca2+ rise. In conclusion, iGluRs expressed in mouse α-cells resemble the low Ca2+-permeable AMPA receptor in brain and can stimulate exocytosis
    corecore