9 research outputs found

    Towards an Intrinsic Doppler Correction for X-ray Spectroscopy of Stored Ions at CRYRING@ESR

    Get PDF
    We report on a new experimental approach for the Doppler correction of X-rays emitted by heavy ions, using novel metallic magnetic calorimeter detectors which uniquely combine a high spectral resolution with a broad bandwidth acceptance. The measurement was carried out at the electron cooler of CRYRING@ESR at GSI, Darmstadt, Germany. The X-ray emission associated with the radiative recombination of cooler electrons and stored hydrogen-like uranium ions was investigated using two novel microcalorimeter detectors positioned under 0∘ and 180∘ with respect to the ion beam axis. This new experimental setup allowed the investigation of the region of the N, M → L transitions in helium-like uranium with a spectral resolution unmatched by previous studies using conventional semiconductor X-ray detectors. When assuming that the rest-frame energy of at least a few of the recorded transitions is well-known from theory or experiments, a precise measurement of the Doppler shifted line positions in the laboratory system can be used to determine the ion beam velocity using only spectral information. The spectral resolution achievable with microcalorimeter detectors should, for the first time, allow intrinsic Doppler correction to be performed for the precision X-ray spectroscopy of stored heavy ions. A comparison with data from a previous experiment at the ESR electron cooler, as well as the conventional method of conducting Doppler correction using electron cooler parameters, will be discussed

    Position-sensitive non-destructive detection of charged-particle bunches in low-energy beamlines

    No full text
    Abstract We have developed and operated an electronic detection system for the non-destructive single-pass detection of bunches of charged particles in a beamline that allows for a measurement of their lateral position with respect to the central beamline axis on a shot-to-shot basis. It provides all features of our related development reported in Kiffer et al. (Rev Sci Instrum 90:113301, 2019), namely single-pass measurement of bunch length, kinetic energy and absolute charge, and is additionally designed to provide the lateral position of bunches with sub-mm accuracy. We show the setup, associated methods and provide characterizing measurements with bunches of highly charged ions in the keV regime of kinetic energy that demonstrate the capabilities and show a typical application

    Single-pass non-destructive electronic detection of charged particles

    No full text
    We have devised an experimental method and apparatus for the simultaneous nondestructive determination of the absolute ion number, ionkinetic energy, and length of bunches of charged particles. We have built and operated a corresponding electronic detector that is based oninduced charges and their subsequent low-noise amplification at cryogenic temperatures. We have performed measurements with bunchesof low-energy highly charged ions from an electron-beam ion source that show the capability of the methods and their implementation. Wediscuss requirements for, and applications of, such detectors with a particular view on the obtainable information and their sensitivity

    Scedosporium and Lomentospora: an updated overview of underrated opportunists

    No full text
    corecore