133 research outputs found

    Increasing Mercury in Yellow Perch at a Hotspot in Atlantic Canada, Kejimkujik National Park

    Get PDF
    In the mid-1990s, yellow perch (Perca flavescens) and common loons (Gavia immer) from Kejimkujik National Park and National Historic Site (KNPNHS), Nova Scotia, Canada, had among the highest mercury (Hg) concentrations across North America. In 2006 and 2007, we re-examined 16 lakes to determine whether there have been changes in Hg in the loon’s preferred prey, yellow perch. Total Hg concentrations were measured in up to nine perch in each of three size classes (5−10 cm, 10−15 cm, and 15−20 cm) consumed by loons. Between 1996/97 and 2006/07, polynomial regressions indicated that Hg in yellow perch increased an average of 29% in ten lakes, decreased an average of 21% in three, and were unchanged in the remaining three lakes. In 2006/07, perch in 75% of the study lakes had Hg concentrations (standardized to 12-cm fish length) equal to or above the concentration (0.21 μg·g−1 ww) associated with a 50% reduction in maximum productivity of loons, compared with only 56% of these lakes in 1996/97. Mercury contamination currently poses a greater threat to loon health than a decade ago, and further reductions in anthropogenic emissions should be considered to reduce its impacts on ecosystem health

    Development and Assessment of a Diagnostic DNA Oligonucleotide Microarray for Detection and Typing of Meningitis-Associated Bacterial Species.

    Get PDF
    Meningitis is commonly caused by infection with a variety of bacterial or viral pathogens. Acute bacterial meningitis (ABM) can cause severe disease, which can progress rapidly to a critical life-threatening condition. Rapid diagnosis of ABM is critical, as this is most commonly associated with severe sequelae with associated high mortality and morbidity rates compared to viral meningitis, which is less severe and self-limiting. We have designed a microarray for detection and diagnosis of ABM. This has been validated using randomly amplified DNA targets (RADT), comparing buffers with or without formamide, in glass slide format or on the Alere ArrayTubeTM (Alere Technologies GmbH) microarray platform. Pathogen-specific signals were observed using purified bacterial nucleic acids and to a lesser extent using patient cerebral spinal fluid (CSF) samples, with some technical issues observed using RADT and glass slides. Repurposing the array onto the Alere ArrayTubeTM platform and using a targeted amplification system increased specific and reduced nonspecific hybridization signals using both pathogen nucleic and patient CSF DNA targets, better revealing pathogen-specific signals although sensitivity was still reduced in the latter. This diagnostic microarray is useful as a laboratory diagnostic tool for species and strain designation for ABM, rather than for primary diagnosis

    Characterization of the NASA Langley Arc Heated Scramjet Test Facility Using NO PLIF

    Get PDF
    The nitric oxide planar laser-induced fluorescence (NO PLIF) imaging was used to characterize the air flow of the NASA Langley Arc Heated Scramjet Test Facility (AHSTF) configured with a Mach 6 nozzle. The arc raises the enthalpy of the test gas in AHSTF, producing nitric oxide. Nitric oxide persists as the temperature drops through the nozzle into the test section. NO PLIF was used to qualitatively visualize the flowfield at different experimental conditions, measure the temperature of the gas flow exiting the facility nozzle, and visualize the wave structure downstream of the nozzle at different operating conditions. Uniformity and repeatability of the nozzle flow were assessed. Expansion and compression waves on the free-jet shear layer as the nozzle flow expands into the test section were visualized. The main purpose of these experiments was to assess the uniformity of the NO in the freestream gas for planned experiments, in which NO PLIF will be used for qualitative fuel-mole-fraction sensitive imaging. The shot-to-shot fluctuations in the PLIF signal, caused by variations in the overall laser intensity as well as NO concentration and temperature variations in the flow was 20-25% of the mean signal, as determined by taking the standard deviation of a set of images obtained at constant conditions and dividing by the mean. The fluctuations within individual images, caused by laser sheet spatial variations as well as NO concentration and temperature variations in the flow, were about 28% of the mean in images, determined by taking standard deviation within individual images, dividing by the mean in the same image and averaged over the set of images. Applying an averaged laser sheet intensity correction reduced the within-image intensity fluctuations to about 10% suggesting that the NO concentration is uniform to within 10%. There was no significant difference in flow uniformity between the low and high enthalpy settings. While not strictly quantitative, the temperature maps show qualitative agreement with the computations of the flow

    Challenges and Opportunities for Ecosystem-Based Management and Marine Spatial Planning in the Irish Sea

    Get PDF
    Ecosystem-Based Management (EBM) integrates the connections between land, air, water and all living things including human beings and their institutions. The location of the Irish Sea, between major historical industrial centres, its history of use and exploitation, combined with its hydrographic characteristics, have led to the current patterns of use. EBM efforts have been ongoing for over a decade but political boundaries have led to fragmented governance. The forthcoming UK exit from the European Union (EU) may pose further challenges. This chapter examines articulations between political boundaries, spatial scales of Marine Spatial Planning and nested social-ecological systems including the gyre in the western Irish Sea, and Dublin Bay. Examples of emerging best practices are provided and the challenges of data availability for ecosystem services are considered

    A path forward in the debate over health impacts of endocrine disrupting chemicals

    Get PDF
    Several recent publications reflect debate on the issue of “endocrine disrupting chemicals” (EDCs), indicating that two seemingly mutually exclusive perspectives are being articulated separately and independently. Considering this, a group of scientists with expertise in basic science, medicine and risk assessment reviewed the various aspects of the debate to identify the most significant areas of dispute and to propose a path forward. We identified four areas of debate. The first is about the definitions for terms such as “endocrine disrupting chemical”, “adverse effects”, and “endocrine system”. The second is focused on elements of hormone action including “potency”, “endpoints”, “timing”, “dose” and “thresholds”. The third addresses the information needed to establish sufficient evidence of harm. Finally, the fourth focuses on the need to develop and the characteristics of transparent, systematic methods to review the EDC literature. Herein we identify areas of general consensus and propose resolutions for these four areas that would allow the field to move beyond the current and, in our opinion, ineffective debate

    Communication Biophysics

    Get PDF
    Contains reports on six research projects.National Institutes of Health (Grant 5 PO1 NS13126)National Institutes of Health (Grant 5 RO1 NS18682)National Institutes of Health (Grant 5 RO1 NS20322)National Institutes of Health (Grant 5 R01 NS20269)National Institutes of Health (Grant 5 T32NS 07047)Symbion, Inc.National Science Foundation (Grant BNS 83-19874)National Science Foundation (Grant BNS 83-19887)National Institutes of Health (Grant 6 RO1 NS 12846)National Institutes of Health (Grant 1 RO1 NS 21322

    Lucy's Flat Feet: The Relationship between the Ankle and Rearfoot Arching in Early Hominins

    Get PDF
    BACKGROUND. In the Plio-Pleistocene, the hominin foot evolved from a grasping appendage to a stiff, propulsive lever. Central to this transition was the development of the longitudinal arch, a structure that helps store elastic energy and stiffen the foot during bipedal locomotion. Direct evidence for arch evolution, however, has been somewhat elusive given the failure of soft-tissue to fossilize. Paleoanthropologists have relied on footprints and bony correlates of arch development, though little consensus has emerged as to when the arch evolved. METHODOLOGY/PRINCIPAL FINDINGS. Here, we present evidence from radiographs of modern humans (n=261) that the set of the distal tibia in the sagittal plane, henceforth referred to as the tibial arch angle, is related to rearfoot arching. Non-human primates have a posteriorly directed tibial arch angle, while most humans have an anteriorly directed tibial arch angle. Those humans with a posteriorly directed tibial arch angle (8%) have significantly lower talocalcaneal and talar declination angles, both measures of an asymptomatic flatfoot. Application of these results to the hominin fossil record reveals that a well developed rearfoot arch had evolved in Australopithecus afarensis. However, as in humans today, Australopithecus populations exhibited individual variation in foot morphology and arch development, and "Lucy" (A.L. 288-1), a 3.18 Myr-old female Australopithecus, likely possessed asymptomatic flat feet. Additional distal tibiae from the Plio-Pleistocene show variation in tibial arch angles, including two early Homo tibiae that also have slightly posteriorly directed tibial arch angles. CONCLUSIONS/SIGNIFICANCE. This study finds that the rearfoot arch was present in the genus Australopithecus. However, the female Australopithecus afarensis "Lucy" has an ankle morphology consistent with non-pathological flat-footedness. This study suggests that, as in humans today, there was variation in arch development in Plio-Pleistocene hominins.Leakey Foundatio

    A proposed framework for the systematic review and integrated assessment (SYRINA) of endocrine disrupting chemicals

    Get PDF
    Background - The issue of endocrine disrupting chemicals (EDCs) is receiving wide attention from both the scientific and regulatory communities. Recent analyses of the EDC literature have been criticized for failing to use transparent and objective approaches to draw conclusions about the strength of evidence linking EDC exposures to adverse health or environmental outcomes. Systematic review methodologies are ideal for addressing this issue as they provide transparent and consistent approaches to study selection and evaluation. Objective methods are needed for integrating the multiple streams of evidence (epidemiology, wildlife, laboratory animal, in vitro, and in silico data) that are relevant in assessing EDCs. Methods - We have developed a framework for the systematic review and integrated assessment (SYRINA) of EDC studies. The framework was designed for use with the International Program on Chemical Safety (IPCS) and World Health Organization (WHO) definition of an EDC, which requires appraisal of evidence regarding 1) association between exposure and an adverse effect, 2) association between exposure and endocrine disrupting activity, and 3) a plausible link between the adverse effect and the endocrine disrupting activity. Results - Building from existing methodologies for evaluating and synthesizing evidence, the SYRINA framework includes seven steps: 1) Formulate the problem; 2) Develop the review protocol; 3) Identify relevant evidence; 4) Evaluate evidence from individual studies; 5) Summarize and evaluate each stream of evidence; 6) Integrate evidence across all streams; 7) Draw conclusions, make recommendations, and evaluate uncertainties. The proposed method is tailored to the IPCS/WHO definition of an EDC but offers flexibility for use in the context of other definitions of EDCs. Conclusions - When using the SYRINA framework, the overall objective is to provide the evidence base needed to support decision making, including any action to avoid/minimise potential adverse effects of exposures. This framework allows for the evaluation and synthesis of evidence from multiple evidence streams. Finally, a decision regarding regulatory action is not only dependent on the strength of evidence, but also the consequences of action/inaction, e.g. limited or weak evidence may be sufficient to justify action if consequences are serious or irreversible.The workshops that supported the writing of this manuscript were funded by the Swedish Foundation for Strategic Environmental Research “Mistra”. LNV was funded by Award Number K22ES025811 from the National Institute of Environmental Health Sciences of the National Institutes of Health. TJW was funded by The Clarence Heller Foundation (A123547), the Passport Foundation, the Forsythia Foundation, the National Institute of Environmental Health Sciences (grants ES018135 and ESO22841), and U.S. EPA STAR grants (RD83467801 and RD83543301). JT was funded by the Academy of Finland and Sigrid Juselius. UH was funded by the Danish EPA. KAK was funded by the Canada Research Chairs program grant number 950–230607
    corecore