133 research outputs found

    Enlightening the atomistic mechanisms driving self-diffusion of amorphous Si during annealing

    Get PDF
    We have analyzed the atomic rearrangements underlying self-diffusion in amorphous Si during annealing using tight-binding molecular dynamics simulations. Two types of amorphous samples with different structural features were used to analyze the influence of coordination defects. We have identified several types of atomic rearrangement mechanisms, and we have obtained an effective migration energy of around 1 eV. We found similar migration energies for both types of samples, but higher diffusivities in the one with a higher initial percentage of coordination defects.Comment: 9 pages, 4 figure

    Local formation of HArF in solid argon: Low-temperature limit and thermal activation

    No full text
    The H + Ar + F reaction leading to HArF formation in an argon matrix is studied at temperatures down to 8 K. The effects of the precursor concentration, deuteration, IR light, and deposition temperature as well as thermal activation of this reaction are studied. It is found that HArF molecules are formed slowly but efficiently at 8 K in a photolyzed HF/Ar matrix, supporting the previously reported results. The formation rate of HArF (and DArF) exhibits a low-temperature limit and enhances at elevated temperatures with activation energy of ca. 40 meV. All the data show that HArF is formed as a result of a local reaction of hydrogen atoms with the parent Ar−F centers and the tunneling mechanism is very probable here. The locality of the precursor photolysis required for this tunneling reaction is consistent with the partial HArF formation observed during photolysis of HF in an argon matrix. The decay mechanism of (ArHAr)⁺ cations is also studied. The present results confirm the previous conclusions that the decay of the cations is not essentially connected to the HArF formation

    Blue luminescence of Au nanoclusters embedded in silica matrix

    Full text link
    Photoluminescence study using the 325 nm He-Cd excitation is reported for the Au nanoclusters embedded in SiO2 matrix. Au clusters are grown by ion beam mixing with 100 KeV Ar+ irradiation on Au [40 nm]/SiO2 at various fluences and subsequent annealing at high temperature. The blue bands above ~3 eV match closely with reported values for colloidal Au nanoclusters and supported Au nanoislands. Radiative recombination of sp electrons above Fermi level to occupied d-band holes are assigned for observed luminescence peaks. Peaks at 3.1 eV and 3.4 eV are correlated to energy gaps at the X- and L-symmetry points, respectively, with possible involvement of relaxation mechanism. The blue shift of peak positions at 3.4 eV with decreasing cluster size is reported to be due to the compressive strain in small clusters. A first principle calculation based on density functional theory using the full potential linear augmented plane wave plus local orbitals (FP-LAPW+LO) formalism with generalized gradient approximation (GGA) for the exchange correlation energy is used to estimate the band gaps at the X- and L-symmetry points by calculating the band structures and joint density of states (JDOS) for different strain values in order to explain the blueshift of ~0.1 eV with decreasing cluster size around L-symmetry point.Comment: 13 pages, 7 Figures Only in PDF format; To be published in J. of Chem. Phys. (Tentative issue of publication 8th December 2004

    Optical properties of structurally-relaxed Si/SiO2_2 superlattices: the role of bonding at interfaces

    Full text link
    We have constructed microscopic, structurally-relaxed atomistic models of Si/SiO2_2 superlattices. The structural distortion and oxidation-state characteristics of the interface Si atoms are examined in detail. The role played by the interface Si suboxides in raising the band gap and producing dispersionless energy bands is established. The suboxide atoms are shown to generate an abrupt interface layer about 1.60 \AA thick. Bandstructure and optical-absorption calculations at the Fermi Golden rule level are used to demonstrate that increasing confinement leads to (a) direct bandgaps (b) a blue shift in the spectrum, and (c) an enhancement of the absorption intensity in the threshold-energy region. Some aspects of this behaviour appear not only in the symmetry direction associated with the superlattice axis, but also in the orthogonal plane directions. We conclude that, in contrast to Si/Ge, Si/SiO2_2 superlattices show clear optical enhancement and a shift of the optical spectrum into the region useful for many opto-electronic applications.Comment: 11 pages, 10 figures (submitted to Phys. Rev. B

    Stable Lithium Argon compounds under high pressure

    Get PDF
    High pressure can fundamentally alter the bonding patterns of chemical elements. Its effects include stimulating elements thought to be “inactive” to form unexpectedly stable compounds with unusual chemical and physical properties. Here, using an unbiased structure search method based on CALYPSO methodology and density functional total energy calculations, the phase stabilities and crystal structures of Li−Ar compounds are systematically investigated at high pressure up to 300 GPa. Two unexpected Li(m)Ar(n) compounds (LiAr and Li(3)Ar) are predicted to be stable above 112 GPa and 119 GPa, respectively. A detailed analysis of the electronic structure of LiAr and Li(3)Ar shows that Ar in these compounds attracts electrons and thus behaves as an oxidizing agent. This is markedly different from the hitherto established chemical reactivity of Ar. Moreover, we predict that the P4/mmm phase of Li(3)Ar has a superconducting transition temperature of 17.6 K at 120 GPa

    Inert gas goes organic

    No full text
    corecore