73 research outputs found

    Reaction study and phase formation in Bi2O3-ZnO-Nb2O5 ternary system

    Get PDF
    The formation of two structurally related phases; cubic pyrochlore and monoclinic zirconolite in Bi2O3-ZnO-Nb2O5 (BZN) ternary system was investigated. Phase pure Bi4Zn4/3Nb8/3O14 synthesized via conventional solid state methods at 950oC was refined and fully indexed with space group C2 /c; lattice parameters, a = 13.1109(3) Ǻ, b = 7.6764(2) Ǻ, c = 12.1528(2) Ǻ and α = γ = 90C and β = 101.33o, respectively. Reaction study revealed that Bi5Nb3O15 and BiNbO4 phases are two important precursors that react with ZnO at higher temperatures during phase formation. The pyrochlore does not form at the conventionally predicted composition Bi4Zn4/3Nb8/3O14, which falls in the zirconolite region. Instead, cubic pyrochlore forms at substantially lower Bi concentrations in BZN system. The two interrelated areas, a trapezoidal cubic pyrochlore subsolidus, and a rectangular shaped monoclinic zirconolite subsolidus serve to confirm the data consistency over various phase assemblages and compatibility in the phase diagram

    On the pivotal role of PPARa in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury

    Get PDF
    The role of peroxisome proliferator activated alpha (PPARα) -mediated metabolic remodeling in cardiac adaptation to hypoxia has yet to be defined. Here, mice were housed in hypoxia for 3 weeks before in vivo contractile function was measured using cine magnetic resonance (MR) imaging. In isolated, perfused hearts, energetics were measured using 31P MR spectroscopy and glycolysis and fatty acid oxidation were measured using 3H labelling. Compared with normoxic, chow-fed control mouse heart, hypoxia decreased PPARα expression, fatty acid oxidation and mitochondrial UCP3 levels, while increasing glycolysis, all of which served to maintain normal ATP concentrations and thereby ejection fractions. A high-fat diet increased cardiac PPARα expression, fatty acid oxidation and UCP3 levels, with decreased glycolysis. Hypoxia was unable to alter the high PPARα expression or reverse the metabolic changes caused by the high fat diet, with the result that ATP concentrations and contractile function decreased significantly. The adaptive metabolic changes caused by hypoxia in control mouse hearts were found to have already occurred in PPARα-/- mouse hearts, and sustained function in hypoxia despite an inability for further metabolic remodelling. We conclude that decreased cardiac PPARα expression is essential for adaptive metabolic remodelling in hypoxia, but is prevented by dietary fat

    Identification of valid housekeeping genes for quantitative RT-PCR analysis of cardiosphere-derived cells preconditioned under hypoxia or with prolyl-4-hydroxylase inhibitors

    Get PDF
    Infarction irreversibly damages the heart, with formation of an akinetic scar that may lead to heart failure. Endogenous cardiac stem cells (CSCs) are a promising candidate cell source for restoring lost tissue and thereby preventing heart failure. CSCs may be isolated in vitro, via the formation of cardiospheres, to give cardiosphere-derived cells (CDCs). Although qRT-PCR analyses of CDCs have been performed, no justification for the selection of the housekeeping gene has been published. Here, we evaluated the most suitable housekeeping gene for RNA expression analysis in CDCs cultured under normoxia, hypoxia or with prolyl-4-hydroxylase inhibitors (PHDIs), from both neonatal and adult rats, to determine the effects of ageing and different culture conditions on the stability of the housekeeping gene for CDCs. Six candidate housekeeping genes, [glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-actin (Actb), hypoxanthine phosphoribosyltransferase 1 (HPRT-1), beta-2-microtubulin (β2M), 60S acidic ribosomal protein large P1 (RPLP-1) and TATA box binding protein (Tbp)] were evaluated in this study. Analysis using geNorm and NormFinder revealed that GAPDH was the most constant housekeeping gene among all genes tested under normoxia for both neonatal and adult CDCs, whereas Actb was the most stable housekeeping gene under hypoxia. For the PHDI-treated CDCs, overall, GADPH, Actb and β2M were more consistently expressed, whereas HPRT-1, RPLP-1 and Tbp showed unstable expression. The ranking for β2M, HPRT-1 and RPLP-1 stability was different for neonatal and adult cells, indicating that expression of these genes was age-dependent. Lastly, independent of age or culture conditions, Tbp was the least stable housekeeping gene. In conclusion, a combination of Actb and GADPH gave the most reliable normalization for comparative analyses of gene transcription in neonatal and adult rat CDCs preconditioned by hypoxia or PHDIs

    cAMP Response Element Binding Protein Is Required for Differentiation of Respiratory Epithelium during Murine Development

    Get PDF
    The cAMP response element binding protein 1 (Creb1) transcription factor regulates cellular gene expression in response to elevated levels of intracellular cAMP. Creb1−/− fetal mice are phenotypically smaller than wildtype littermates, predominantly die in utero and do not survive after birth due to respiratory failure. We have further investigated the respiratory defect of Creb1−/− fetal mice during development. Lungs of Creb1−/− fetal mice were pale in colour and smaller than wildtype controls in proportion to their reduced body size. Creb1−/− lungs also did not mature morphologically beyond E16.5 with little or no expansion of airway luminal spaces, a phenotype also observed with the Creb1−/− lung on a Crem−/− genetic background. Creb1 was highly expressed throughout the lung at all stages examined, however activation of Creb1 was detected primarily in distal lung epithelium. Cell differentiation of E17.5 Creb1−/− lung distal epithelium was analysed by electron microscopy and showed markedly reduced numbers of type-I and type-II alveolar epithelial cells. Furthermore, immunomarkers for specific lineages of proximal epithelium including ciliated, non-ciliated (Clara), and neuroendocrine cells showed delayed onset of expression in the Creb1−/− lung. Finally, gene expression analyses of the E17.5 Creb1−/− lung using whole genome microarray and qPCR collectively identified respiratory marker gene profiles and provide potential novel Creb1-regulated genes. Together, these results demonstrate a crucial role for Creb1 activity for the development and differentiation of the conducting and distal lung epithelium

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC

    Dynamic simulations of a total knee replacement: assessing the performance envelope using patient specific loads

    No full text
    A three-dimensional finite element (FE) knee model was developed to predict the performance envelope of a knee prosthesis for a group of patients. Level gait knee joint forces of seven healthy patients were used to drive the FE model. The only kinematic input used was the flexion-extension (F-E) angles. The parameters examined include the anterior-posterior (A-P) displacements, internalexternal (I-E) rotations and the polyethylene (PE) stresses. A performance envelope was obtained for each of the parameters of interest. The maximum femoral component posterior displacement was 3.6 mm and the maximum anterior displacement was 4.8 mm. The highest internal rotation of the femoral component was 4.3° while the highest external rotation was approximately 7°. The highest maximum von Mises stress was 22.1 MPa

    Outer Membrane Vesicle Proteome of <i>Porphyromonas gingivalis</i> Is Differentially Modulated Relative to the Outer Membrane in Response to Heme Availability

    No full text
    <i>Porphyromonas gingivalis</i> is an anaerobic, Gram-negative oral pathogen associated with chronic periodontitis. <i>P. gingivalis</i> has an obligate requirement for heme, which it obtains from the host. Heme availability has been linked to disease initiation and progression. In this study we used continuous culture of the bacterium to determine the effect of heme limitation and excess on the <i>P. gingivalis</i> proteome. Four biological replicates of whole cell lysate (WCL) and outer membrane vesicle (OMV) samples were digested with trypsin and analyzed by tandem mass spectrometry and MaxQuant label-free quantification. In total, 1211 proteins were quantified, with 108 and 49 proteins significantly changing in abundance more than 1.5-fold (<i>p</i> < 0.05) in the WCLs and OMVs, respectively. The proteins most upregulated in response to heme limitation were those involved in binding and transporting heme, whereas the four proteins most upregulated under the heme-excess condition constitute a putative heme efflux system. In general, the protein abundance ratios obtained for OMVs and WCLs agreed, indicating that changes to the OM protein composition are passed onto OMVs; however, 16 proteins were preferentially packaged into OMVs under one condition more than the other. In particular, moonlighting cytoplasmic proteins were preferentially associated with OMVs under heme excess
    corecore