79 research outputs found

    Student engagement with school and personality: a biopsychosocial and person-centered approach

    Get PDF
    This is the peer reviewed version of the following article: Moreira, P. A. S., Richard A. Inman, Kevin M. Cloninger, and C. Robert Cloninger. “Student Engagement with School and Personality: A Biopsychosocial and Person-Centred Approach (2021). British Journal of Educational Psychology, 91, 691–713, which has been published in final form at https://doi.org/10.1111/bjep.12388. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.Correspondence concerning this article should be addressed to Prof. Paulo Moreira, Instituto de Psicologia e de Ciências da Educação, Universidade Lusíada, Rua de Moçambique 21 e 71, Porto 4100-348, Portugal. Email: [email protected]: Engagement with school is a key predictor of students’ academic outcomes, yet little is known about its association with personality. No research has considered this association using Cloninger’s biopsychosocial model of personality. This model may be particularly informative because it posits the structure of human personality corresponds to three systems of human learning and memory that regulate associative conditioning, intentionality and self-awareness, all of which are relevant for understanding engagement. Aims: To test for defined personality phenotypes and describe how they relate to student engagement. Sample: 469 adolescents (54.2% female) attending the eighth (Mage = 13.2, SD = .57) or 11th (Mage = 16.5, SD = .84) grades. Methods: Students completed self-report measures of personality and engagement. We used mixture models to identify latent classes defined by common (a) temperament profiles, (b) character profiles, and (c) joint temperament-character networks, and then tested how these classes differed in engagement. Results: Latent class analysis revealed three distinct joint temperament-character networks: Emotional-Unreliable (emotionally reactive, low self-control and low creativity), Organized-Reliable (self-control but not creative), and Creative-Reliable (highly creative and prosocial). These networks differed significantly in engagement, with the emotional-unreliable network linked to lower engagement. However, the magnitudes of these differences across engagement dimensions did not appear to be uniform. Conclusions: Different integrated configurations of the biopsychosocial systems for associative conditioning, intentionality and self-awareness (differences in personality) underlie student engagement. Our results offer a fine-grained understanding of engagement dimensions in terms of their underlying personality networks, with implications for educational policies and practices

    Analysis of the Two-Level NO PLIF Model for Low-Temperature High-Speed Flow Applications

    Get PDF
    The current work compares experimentally obtained nitric oxide (NO) laser-induced fluorescence (LIF) spectra with the equivalent spectra obtained analytically. The experimental spectra are computed from captured images of fluorescence in a gas cell and from a laser sheet passing through the fuel-air mixing flowfield produced by a high-speed fuel injector. The fuel injector is a slender strut that is currently being studied as a part of the Enhanced Injection and Mixing Project (EIMP) at the NASA Langley Research Center. This injector is placed downstream of a Mach 6 facility nozzle, which simulates the high Mach number airflow at the entrance of a scramjet combustor, and injects helium, which is used as an inert substitute for hydrogen fuel. Experimental planar (P) LIF is obtained by using a UV laser to excite fluorescence from the NO molecules that are present in either a gas cell or the facility air used for the EIMP experiments. The experimental data are obtained for several segments of the NO fluorescence spectrum. The selected segments encompass LIF lines with rotational quantum numbers appropriate for low-to-moderate temperature flows similar to those corresponding to the nominal experimental flow conditions. The experimental LIF spectra are then evaluated from the data and compared with those obtained from the theoretical models. The theoretical spectra are obtained from LIFBASE and LINUS software, and from a simplified version of the two-level fluorescence model. The equivalent analytic PLIF images are also obtained by applying only the simplified model to the results of the Reynolds-averaged simulations (RAS) of the mixing flowfield. Good agreement between the experimental and theoretical results provides increased confidence in both the simplified LIF modeling and CFD simulations for further investigations of high-speed injector performance using this approach

    The psychobiological model of personality and its association with student approaches to learning : Integrating temperament and character

    Get PDF
    This document is the authors’ version of the final accepted manuscript published in 2020 by Scandinavian Journal of Educational Research. https://www.tandfonline.com/doi/full/10.1080/00313831.2020.1739137Correspondence concerning this article should be addressed to Prof. Paulo Moreira, Instituto de Psicologia e de Ciências da Educação, Universidade Lusíada, Rua de Moçambique 21 e 71, Porto 4100-348, Portugal. Email: [email protected] results from the complex interactions among multiple learning and memory systems. There is a need to examine the personality-learning association using a personality model that captures this complexity: Cloninger’s psychobiological model. The study addresses this need using a person-centered approach. In total, 686 adolescents completed the Junior Temperament and Character Inventory (JTCI) and a measure of approaches to learning. Students with a ‘steady’ temperament showed a preference for the deep approach. Students with high character coherence also had this preference. A temperament profile-by-character profile interaction was crucial for understanding students’ preferred approach to learning. These findings imply that adaptive learning approaches result from an integration of major systems of learning and memory, as measured by the Temperament and Character Inventory

    Wolverine Gene Flow Across a Narrow Climatic Niche

    Get PDF
    Wolverines (Guio guio) are one of the rarest carnivores in the contiguous United States. Effective population sizes in Montana, Idaho, and Wyoming, where most of the wolverines in the contiguous United States exist, were calculated to be 35 (credible limits, 28 52) suggesting low abundance. Landscape features that influence wolverine population substructure and gene flow are largely unknown. Recent work has identified strong associations between areas with persistent spring snow and wolverine presence and range. We tested whether a dispersal model in which wolverines prefer to disperse through areas characterized by persistent spring snow cover produced least-cost paths among all individuals that correlated with genetic distance among individuals. Models simulating large preferences for dispersing within areas characterized by persistent spring snow explained the data better than a model based on Euclidean distance. Partial Mantel tests separating Euclidean distance from spring snow-cover-based effects indicated that Euclidean distance was not significant in describing patterns of genetic distance. Because these models indicated that successful dispersal paths followed areas characterized by spring snow cover, we used these understandings to derive empirically based least-cost corridor maps in the U.S. Rocky Mountains. These corridor maps largely explain previously published population subdivision patterns based on mitochondrial DNA and indicate that natural colonization of the southern Rocky Mountains by wolverines will be difficult but not impossible

    Pathema: a clade-specific bioinformatics resource center for pathogen research

    Get PDF
    Pathema (http://pathema.jcvi.org) is one of the eight Bioinformatics Resource Centers (BRCs) funded by the National Institute of Allergy and Infectious Disease (NIAID) designed to serve as a core resource for the bio-defense and infectious disease research community. Pathema strives to support basic research and accelerate scientific progress for understanding, detecting, diagnosing and treating an established set of six target NIAID Category A–C pathogens: Category A priority pathogens; Bacillus anthracis and Clostridium botulinum, and Category B priority pathogens; Burkholderia mallei, Burkholderia pseudomallei, Clostridium perfringens and Entamoeba histolytica. Each target pathogen is represented in one of four distinct clade-specific Pathema web resources and underlying databases developed to target the specific data and analysis needs of each scientific community. All publicly available complete genome projects of phylogenetically related organisms are also represented, providing a comprehensive collection of organisms for comparative analyses. Pathema facilitates the scientific exploration of genomic and related data through its integration with web-based analysis tools, customized to obtain, display, and compute results relevant to ongoing pathogen research. Pathema serves the bio-defense and infectious disease research community by disseminating data resulting from pathogen genome sequencing projects and providing access to the results of inter-genomic comparisons for these organisms

    Collagen reorganization at the tumor-stromal interface facilitates local invasion

    Get PDF
    BACKGROUND: Stromal-epithelial interactions are of particular significance in breast tissue as misregulation of these interactions can promote tumorigenesis and invasion. Moreover, collagen-dense breast tissue increases the risk of breast carcinoma, although the relationship between collagen density and tumorigenesis is not well understood. As little is known about epithelial-stromal interactions in vivo, it is necessary to visualize the stroma surrounding normal epithelium and mammary tumors in intact tissues to better understand how matrix organization, density, and composition affect tumor formation and progression. METHODS: Epithelial-stromal interactions in normal mammary glands, mammary tumors, and tumor explants in three-dimensional culture were studied with histology, electron microscopy, and nonlinear optical imaging methodologies. Imaging of the tumor-stromal interface in live tumor tissue ex vivo was performed with multiphoton laser-scanning microscopy (MPLSM) to generate multiphoton excitation (MPE) of endogenous fluorophores and second harmonic generation (SHG) to image stromal collagen. RESULTS: We used both laser-scanning multiphoton and second harmonic generation microscopy to determine the organization of specific collagen structures around ducts and tumors in intact, unfixed and unsectioned mammary glands. Local alterations in collagen density were clearly seen, allowing us to obtain three-dimensional information regarding the organization of the mammary stroma, such as radiating collagen fibers that could not have been obtained using classical histological techniques. Moreover, we observed and defined three tumor-associated collagen signatures (TACS) that provide novel markers to locate and characterize tumors. In particular, local cell invasion was found predominantly to be oriented along certain aligned collagen fibers, suggesting that radial alignment of collagen fibers relative to tumors facilitates invasion. Consistent with this observation, primary tumor explants cultured in a randomly organized collagen matrix realigned the collagen fibers, allowing individual tumor cells to migrate out along radially aligned fibers. CONCLUSION: The presentation of these tumor-associated collagen signatures allowed us to identify pre-palpable tumors and see cells at the tumor-stromal boundary invading into the stroma along radially aligned collagen fibers. As such, TACS should provide indications that a tumor is, or could become, invasive, and may serve as part of a strategy to help identify and characterize breast tumors in animal and human tissues

    Evolution of the TGF-β Signaling Pathway and Its Potential Role in the Ctenophore, Mnemiopsis leidyi

    Get PDF
    The TGF-β signaling pathway is a metazoan-specific intercellular signaling pathway known to be important in many developmental and cellular processes in a wide variety of animals. We investigated the complexity and possible functions of this pathway in a member of one of the earliest branching metazoan phyla, the ctenophore Mnemiopsis leidyi. A search of the recently sequenced Mnemiopsis genome revealed an inventory of genes encoding ligands and the rest of the components of the TGF-β superfamily signaling pathway. The Mnemiopsis genome contains nine TGF-β ligands, two TGF-β-like family members, two BMP-like family members, and five gene products that were unable to be classified with certainty. We also identified four TGF-β receptors: three Type I and a single Type II receptor. There are five genes encoding Smad proteins (Smad2, Smad4, Smad6, and two Smad1s). While we have identified many of the other components of this pathway, including Tolloid, SMURF, and Nomo, notably absent are SARA and all of the known antagonists belonging to the Chordin, Follistatin, Noggin, and CAN families. This pathway likely evolved early in metazoan evolution as nearly all components of this pathway have yet to be identified in any non-metazoan. The complement of TGF-β signaling pathway components of ctenophores is more similar to that of the sponge, Amphimedon, than to cnidarians, Trichoplax, or bilaterians. The mRNA expression patterns of key genes revealed by in situ hybridization suggests that TGF-β signaling is not involved in ctenophore early axis specification. Four ligands are expressed during gastrulation in ectodermal micromeres along all three body axes, suggesting a role in transducing earlier maternal signals. Later expression patterns and experiments with the TGF-β inhibitor SB432542 suggest roles in pharyngeal morphogenesis and comb row organization

    A trematode parasite derived growth factor binds and exerts influences on host immune functions via host cytokine receptor complexes

    Get PDF
    The trematode Fasciola hepatica is responsible for chronic zoonotic infection globally. Despite causing a potent T-helper 2 response, it is believed that potent immunomodulation is responsible for rendering this host reactive non-protective host response thereby allow- ing the parasite to remain long-lived. We have previously identified a growth factor, FhTLM, belonging to the TGF superfamily can have developmental effects on the parasite. Herein we demonstrate that FhTLM can exert influence over host immune functions in a host receptor specific fashion. FhTLM can bind to receptor members of the Transforming Growth Factor (TGF) superfamily, with a greater affinity for TGF-β RII. Upon ligation FhTLM initiates the Smad2/3 pathway resulting in phenotypic changes in both fibroblasts and macrophages. The formation of fibroblast CFUs is reduced when cells are cultured with FhTLM, as a result of TGF-β RI kinase activity. In parallel the wound closure response of fibroblasts is also delayed in the presence of FhTLM. When stimulated with FhTLM blood monocyte derived macrophages adopt an alternative or regulatory phenotype. They express high levels interleukin (IL)-10 and arginase-1 while displaying low levels of IL-12 and nitric oxide. Moreover they also undergo significant upregulation of the inhibitory recep- tor PD-L1 and the mannose receptor. Use of RNAi demonstrates that this effect is depen- dent on TGF-β RII and mRNA knock-down leads to a loss of IL-10 and PD-L1. Finally, we demonstrate that FhTLM aids newly excysted juveniles (NEJs) in their evasion of antibody- dependent cell cytotoxicity (ADCC) by reducing the NO response of macrophages—again dependent on TGF-β RI kinase. FhTLM displays restricted expression to the F. hepatica gut resident NEJ stages. The altered fibroblast responses would suggest a role for damp- ened tissue repair responses in facilitating parasite migration. Furthermore, the adoption of a regulatory macrophage phenotype would allow for a reduced effector response targetingjuvenile parasites which we demonstrate extends to an abrogation of the ADCC response. Thus suggesting that FhTLM is a stage specific evasion molecule that utilises host cytokine receptors. These findings are the first to clearly demonstrate the interaction of a helminth cytokine with a host receptor complex resulting in immune modifications that facilitate the non-protective chronic immune response which is characteristic of F. hepatica infection

    Collagen density promotes mammary tumor initiation and progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mammographically dense breast tissue is one of the greatest risk factors for developing breast carcinoma. Despite the strong clinical correlation, breast density has not been causally linked to tumorigenesis, largely because no animal model has existed for studying breast tissue density. Importantly, regions of high breast density are associated with increased stromal collagen. Thus, the influence of the extracellular matrix on breast carcinoma development and the underlying molecular mechanisms are not understood.</p> <p>Methods</p> <p>To study the effects of collagen density on mammary tumor formation and progression, we utilized a bi-transgenic tumor model with increased stromal collagen in mouse mammary tissue. Imaging of the tumors and tumor-stromal interface in live tumor tissue was performed with multiphoton laser-scanning microscopy to generate multiphoton excitation and spectrally resolved fluorescent lifetimes of endogenous fluorophores. Second harmonic generation was utilized to image stromal collagen.</p> <p>Results</p> <p>Herein we demonstrate that increased stromal collagen in mouse mammary tissue significantly increases tumor formation approximately three-fold (<it>p </it>< 0.00001) and results in a significantly more invasive phenotype with approximately three times more lung metastasis (<it>p </it>< 0.05). Furthermore, the increased invasive phenotype of tumor cells that arose within collagen-dense mammary tissues remains after tumor explants are cultured within reconstituted three-dimensional collagen gels. To better understand this behavior we imaged live tumors using nonlinear optical imaging approaches to demonstrate that local invasion is facilitated by stromal collagen re-organization and that this behavior is significantly increased in collagen-dense tissues. In addition, using multiphoton fluorescence and spectral lifetime imaging we identify a metabolic signature for flavin adenine dinucleotide, with increased fluorescent intensity and lifetime, in invading metastatic cells.</p> <p>Conclusion</p> <p>This study provides the first data causally linking increased stromal collagen to mammary tumor formation and metastasis, and demonstrates that fundamental differences arise and persist in epithelial tumor cells that progressed within collagen-dense microenvironments. Furthermore, the imaging techniques and signature identified in this work may provide useful diagnostic tools to rapidly assess fresh tissue biopsies.</p
    corecore