17 research outputs found

    Performance evaluation and optimisation of post combustion CO2 capture processes for natural gas applications at pilot scale via a verified rate-based model

    Get PDF
    CO2 absorption based on chemical reactions is one of the most promising technologies for post combustion CO2 capture (PCC). There have been significant efforts to develop energy efficient and cost effective PCC processes. Given that PCC is still maturing as a technology, there will be a continuing need for pilot scale facilities to support process optimisation, especially in terms of energy efficiency. Pilot scale PCC facilities, which are usually orders of magnitude smaller than those that will be used in future in large scale fossil power plants, make it possible to study details of the PCC process at an affordable scale. However, it is essential that pilot scale studies provide credible data, if this is to be used with confidence to envisage the future large-scale use of the PCC process, especially in terms of energy consumption. The present work therefore establishes and experimentally verifies (using a representative pilot plant as a case study) procedures for analysing the energy performance of a pilot scale amine based CO2 capture plants, focusing on natural gas fired applications. The research critically assesses the pilot plant’s current energy performance, and proposes new operating conditions and system modifications by which the pilot plant will operate more efficiently in terms of energy consumption. The methodology developed to assess and improve the energy performance of the PCC process is applicable, with appropriate inputs, to other plants of this type that employs aqueous 30 wt. % monoethanolamine (MEA) solution as the solvent. A rate based model of the post combustion CO2 capture process using an aqueous solution of 30 wt. % MEA as the solvent was developed in Aspen Plus¼ V.8.4, and verified using the results of experimental studies carried out using the UK Carbon Capture and Storage Research Centre / Pilot-scale Advanced Capture Technology (UKCCSRC/PACT) pilot plant, as a representative pilot-scale capture plant, and employed for parametric sensitivity studies. Several parameters have been identified and varied over a given range of lean solvent CO2 loading to evaluate their effects on the pilot plant energy requirement. The optimum lean solvent CO2 loading was determined using the total equivalent work concept. Results show, for a given packing material type, the majority of energy savings can be realised by optimising the stripper operating pressure. To some extent, a higher solvent temperature at the stripper inlet has the potential to reduce the regeneration energy requirement. A more efficient packing material, can greatly improve the pilot plant overall energy and mass transfer efficiency

    Report of the CMC BIBFRAME Task Force to the Board of the Music Library Association

    Full text link
    The BIBFRAME Task Force was established by the MLA Board of Directors in October 2014 for a two­-year period with the following charge: ● Provide a voice for the music library community in the formation and testing of the Bibliographic Framework Initiative (BIBFRAME) ● Test the BIBFRAME schema and the LC MARC­to­BIBFRAME converter with regards to how they handle music materials, including scores and sound recordings ● Provide feedback to LC and Zepheira on particular areas of interest for music, such as medium of performance, genre, preferred titles and name­title authorities ● Identify a means for continually monitoring, evaluating and testing BIBFRAME implementations ● Make recommendations regarding how MLA can best communicate BIBFRAME development to the MLA community and voice responses to BIBFRAME development ● Test BIBFRAME implementations for particular areas of music resources ● Monitor training opportunities in which music librarians could participate and share information about such opportunities This report represents the collective experience of the task force produced after 15 months of inquiry, experimentation and discussion. Information in this report is current as of December 15, 2015. General findings and recommendations are followed by findings and recommendations on specific topics

    Aquatic and terrestrial morphotypes of the aquatic invasive plant, Ludwigia grandiflora, show distinct morphological and metabolomic responses

    No full text
    International audienceIn the context of expansion of invasive species, survival of invasive plants is conditioned by their ability to adapt. In France, the water primrose , an aquatic invasive species, invades yet wet meadows, leading to a depreciation of their fodder value. Understanding its potential adaption is necessary to its management, strong differences between both morphotypes were expected. So morphological and metabolic responses to terrestrial environment were analyzed for aquatic and terrestrial morphotypes. All morphological and biomass variables were greater in the terrestrial morphotype than the aquatic morphotype, independent of conditions. In terrestrial condition, both morphotypes showed a high production of sugars in root tissues, especially in the terrestrial morphotype and both morphotypes produced a low level of amino acids in shoot tissues. All results demonstrate that the terrestrial condition seems a stressful situation for both morphotypes, which activates glycolysis and fermentation pathways to improve their survival under hypoxic stress. But, only the terrestrial morphotype has been able to adjust its metabolism and maintain efficient growth. In the future, a differential transcriptomic analysis will be carried out to confirm this result

    High-resolution mass spectrometry-based metabolomics for increased grape juice metabolite coverage.

    No full text
    International audienceThe composition of the juice from grape berries is at the basis of the definition of technological ripeness before harvest, historically evaluated from global sugar and acid contents. If many studies have contributed to the identification of other primary and secondary metabolites in whole berries, deepening knowledge about the chemical composition of the sole flesh of grape berries (i.e., without considering skins and seeds) at harvest is of primary interest when studying the enological potential of widespread grape varieties producing high-added-value wines. Here, we used non-targeted DI-FT-ICR-MS and RP-UHPLC-Q-ToF-MS analyses to explore the extent of metabolite coverage of up to 290 grape juices from four Vitis vinifera grape varieties, namely Chardonnay, Pinot noir, Meunier, and Aligoté, sampled at harvest from 91 vineyards in Europe and Argentina, over three successive vintages. SPE pretreatment of samples led to the identification of more than 4500 detected C,H,O,N,S-containing elemental compositions, likely associated with tens of thousands of distinct metabolites. We further revealed that a major part of this chemical diversity appears to be common to the different juices, as exemplified by Pinot noir and Chardonnay samples. However, it was possible to build significant models for the discrimination of Chardonnay from Pinot noir grape juices, and of Chardonnay from Aligoté grape juices, regardless of the geographical origin or the vintage. Therefore, this metabolomic approach opens access to a remarkable holistic molecular description of the instantaneous composition of such a biological matrix, which is the result of complex interplays among environmental, biochemical, and vine growing practices

    Use of a Minimal Microbial Consortium to Determine the Origin of Kombucha Flavor

    No full text
    International audienceMicrobiological, chemical, and sensory analyses were coupled to understand the origins of kombucha organoleptic compounds and their implication in the flavor of the kombucha beverage. By isolating microorganisms from an original kombucha and comparing it to monocultures and cocultures of two yeasts ( Brettanomyces bruxellensis and Hanseniaspora valbyensis ) and an acetic acid bacterium ( Acetobacter indonesiensis ), interaction effects were investigated during the two phases of production. 32 volatile compounds identified and quantified by Headspace-Solid Phase-MicroExtraction-Gas Chromatography/Mass Spectrometry (HS-SPME-GC/MS) were classified according to their origin from tea or microorganisms. Many esters were associated to H. valbyensis , while alcohols were associated to both yeasts, acetic acid to A. indonesiensis , and saturated fatty acids to all microorganisms. Concentration of metabolites were dependent on microbial activity, yeast composition, and phase of production. Sensory analysis showed that tea type influenced the olfactive perception, although microbial composition remained the strongest factor. Association of B. bruxellensis and A. indonesiensis induced characteristic apple juice aroma

    Mechanical stress rapidly induces E-resveratrol and E-piceatannol biosynthesis in grape canes stored as a freshly-pruned byproduct

    No full text
    International audienceGrape canes represent a promising source of bioactive phytochemicals. However the stabilization of the raw material after pruning remains challenging. We recently reported the induction of stilbenoid metabolism after winter pruning including a strong accumulation of E-resveratrol and E-piceatannol during the first six weeks of storage. In the present study, the effect of mechanical wounding on freshly-pruned canes was tested to increase the induction of stilbenoid metabolism. Cutting the grape canes in short segments immediately after pruning triggered a transient expression of phenylalanine ammonia-lyase (PAL) and stilbene synthase (STS) genes, followed by a rapid accumulation of E-resveratrol and E-piceatannol. The degree of stilbenoid induction was related to the intensity of mechanical wounding. Data suggest that a global defense response is triggered involving jasmonate signaling, PR proteins and stilbenoid metabolism. Mechanic

    Vineyard evaluation of stilbenoid‐rich grape cane extracts against downy mildew: a large‐scale study

    No full text
    International audienceBACKGROUND:Plasmopara viticola control in organic viticulture requires copper-based fungicides with harmful effects on health and the environment. Plant extracts represent a biorational eco-friendly alternative to copper. The aim of this study was to evaluate the potential of stilbenoid-rich grape cane extract (GCE) against downy mildew on three cultivars over 3 years following natural downy mildew infection.RESULTS:Over all field trials, GCE treatments showed an average reduction in disease incidence of -35% and -38% on leaves and clusters, respectively. The average reduction in disease severity was -35% and -43% on leaves and clusters, respectively. Under artificial downy mildew infection, GCE efficacy corresponded to 1 g L-1 of copper. Neither phytotoxicity nor adverse effects on auxiliary fauna were observed after treatment with GCE.CONCLUSION:Because few or no biocontrol agents are active alone against P. viticola, GCE is a promising alternative to copper-based fungicides. Grape canes, an abundant by-product of viticulture, have great potential for valorization as a biocontrol agent for sustainable viticulture

    Genome-wide identification and biochemical characterization of the UGT88F subfamily in Malus x domestica Borkh

    No full text
    International audienceThe UDP-glycosyltransferase UGT88F subfamily has been described first in Malus x domestica with the characterization of UGT88F1. Up to now UGT88F1 was one of the most active UGT glycosylating dihydrochalcones in vitro. The involvement of UGT88F1 in phloridzin (phloretin 2'-O-glucoside) synthesis, the main apple tree dihydrochalcone, was further confirmed in planta. Since the characterization of UGT88F1, this new UGT subfamily has been poorly studied probably because it seemed restricted to Maloideae. In the present study, we investigate the apple tree genome to identify and biochemically characterize the whole UGT88F subfamily. The apple tree genome contains five full-length UGT88F genes out of which three newly identified members (UGT88F6, UGT88F7 and UGT88F8) and a pseudogene. These genes are organized into two genomic clusters resulting from the recent global genomic duplication event in the apple tree. We show that recombinant UGT88F8 protein specifically glycosylates phloretin in the 2'OH position to synthetize phloridzin in vitro and was therefore named UDP-glucose: phloretin 2'-O-glycosyltransferase. The Km values of UGT88F8 are 7.72â€ŻÎŒM and 10.84â€ŻÎŒM for phloretin and UDP-glucose respectively and are in the same range as UGT88F1 catalytic parameters thus constituting two isoforms. Co-expression patterns of both UGT88F1 and UGT88F8 argue for a redundant function in phloridzin biosynthesis in planta. Contrastingly, recombinant UGT88F6 protein is able to glycosylate in vitro a wide range of flavonoids including flavonols, flavones, flavanones, chalcones and dihydrochalcones, although flavonols are the preferred substrates, e.g. Km value for kaempferol is 2.1â€ŻÎŒM. Depending on the flavonoid, glycosylation occurs at least on the 3-OH and 7-OH positions. Therefore UGT88F6 corresponds to an UDP-glucose: flavonoid 3/7-O-glycosyltransferase. Finally, a molecular modeling study highlights a very high substitution rate of residues in the acceptor binding pocket between UGT88F8 and UGT88F6 which is responsible for the enzymes divergence in substrate and regiospecificity, despite an overall high protein homology
    corecore