110 research outputs found

    Unitary Ca2+ Current through Mammalian Cardiac and Amphibian Skeletal Muscle Ryanodine Receptor Channels under Near-physiological Ionic Conditions

    Get PDF
    Ryanodine receptor (RyR) channels from mammalian cardiac and amphibian skeletal muscle were incorporated into planar lipid bilayers. Unitary Ca2+ currents in the SR lumen-to-cytosol direction were recorded at 0 mV in the presence of caffeine (to minimize gating fluctuations). Currents measured with 20 mM lumenal Ca2+ as exclusive charge carrier were 4.00 and 4.07 pA, respectively, and not significantly different. Currents recorded at 1–30 mM lumenal Ca2+ concentrations were attenuated by physiological [K+] (150 mM) and [Mg2+] (1 mM), in the same proportion (∌55%) in mammalian and amphibian channels. Two amplitudes, differing by ∌35%, were found in amphibian channel studies, probably corresponding to α and ÎČ RyR isoforms. In physiological [Mg2+], [K+], and lumenal [Ca2+] (1 mM), the Ca2+ current was just less than 0.5 pA. Comparison of this value with the Ca2+ flux underlying Ca2+ sparks suggests that sparks in mammalian cardiac and amphibian skeletal muscles are generated by opening of multiple RyR channels. Further, symmetric high concentrations of Mg2+ substantially reduced the current carried by 10 mM Ca2+ (∌40% at 10 mM Mg2+), suggesting that high Mg2+ may make sparks smaller by both inhibiting RyR gating and reducing unitary current

    A low-complexity channel training method for efficient SVD beamforming over MIMO channels

    Get PDF
    Singular value decomposition (SVD) beamforming is an attractive tool for reducing the energy consumption of data transmissions in wireless sensor networks whose nodes are equipped with multiple antennas. However, this method is often not practical due to two important shortcomings: it requires channel state information at the transmitter and the computation of the SVD of the channel matrix is generally too complex. To deal with these issues, we propose a method for establishing an SVD beamforming link without requiring feedback of actual channel or SVD coefficients to the transmitter. Concretely, our method takes advantage of channel reciprocity and a power iteration algorithm (PIA) for determining the precoding and decoding singular vectors from received preamble sequences. A low-complexity version that performs no iterations is proposed and shown to have a signal-to-noise-ratio (SNR) loss within 1 dB of the bit error rate of SVD beamforming with least squares channel estimates. The low-complexity method significantly outperforms maximum ratio combining diversity and Alamouti coding. We also show that the computational cost of the proposed PIA-based method is less than the one of using the Golub–Reinsch algorithm for obtaining the SVD. The number of computations of the low-complexity version is an order of magnitude smaller than with Golub–Reinsch. This difference grows further with antenna array size

    Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion

    Get PDF
    In a recent past, transposable elements (TEs) were referred to as selfish genetic components only capable of copying themselves with the aim of increasing the odds of being inherited. Nonetheless, TEs have been initially proposed as positive control elements acting in synergy with the host. Nowadays, it is well known that TE movement into host genome comprises an important evolutionary mechanism capable of increasing the adaptive fitness. As insights into TE functioning are increasing day to day, the manipulation of transposition has raised an interesting possibility of setting the host functions, although the lack of appropriate genome engineering tools has unpaved it. Fortunately, the emergence of genome editing technologies based on programmable nucleases, and especially the arrival of a multipurpose RNA-guided Cas9 endonuclease system, has made it possible to reconsider this challenge. For such purpose, a particular type of transposons referred to as miniature inverted-repeat transposable elements (MITEs) has shown a series of interesting characteristics for designing functional drivers. Here, recent insights into MITE elements and versatile RNA-guided CRISPR/Cas9 genome engineering system are given to understand how to deploy the potential of TEs for control of the host transcriptional activity.Fil: Vaschetto, Luis Maria Benjamin. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Diversidad y EcologĂ­a Animal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto de Diversidad y EcologĂ­a Animal; Argentina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂ­sicas y Naturales. CĂĄtedra de Diversidad Animal I; Argentin

    D4cpv-calsequestrin: a sensitive ratiometric biosensor accurately targeted to the calcium store of skeletal muscle

    Get PDF
    Current fluorescent monitors of free [Ca2+] in the sarcoplasmic reticulum (SR) of skeletal muscle cells are of limited quantitative value. They provide either a nonratio signal that is difficult to calibrate and is not specific or, in the case of Forster resonant energy transfer (FRET) biosensors, a signal of small dynamic range, which may be degraded further by imperfect targeting and interference from endogenous ligands of calsequestrin. We describe a novel tool that uses the cameleon D4cpv, which has a greater dynamic range and lower susceptibility to endogenous ligands than earlier cameleons. D4cpv was targeted to the SR by fusion with the cDNA of calsequestrin 1 or a variant that binds less Ca2+. “D4cpv-Casq1,” expressed in adult mouse at concentrations up to 22 ”mole/liter of muscle cell, displayed the accurate targeting of calsequestrin and stayed inside cells after permeabilization of surface and t system membranes, which confirmed its strict targeting. FRET ratio changes of D4cpv-Casq1 were calibrated inside cells, with an effective KD of 222 ”M and a dynamic range [(Rmax − Rmin)/Rmin] of 2.5, which are improvements over comparable sensors. Both the maximal ratio, Rmax, and its resting value were slightly lower in areas of high expression, a variation that was inversely correlated to distance from the sites of protein synthesis. The average [Ca2+]SR in 74 viable cells at rest was 416 ”M. The distribution of individual ratio values was Gaussian, but that of the calculated [Ca2+]SR was skewed, with a tail of very large values, up to 6 mM. Model calculations reproduce this skewness as the consequence of quantifiably small variations in biosensor performance. Local variability, a perceived weakness of biosensors, thus becomes quantifiable. It is demonstrably small in D4cpv. D4cpv-Casq1 therefore provides substantial improvements in sensitivity, specificity, and reproducibility over existing monitors of SR free Ca2+ concentration

    Unitary Ca2+ current through recombinant type 3 InsP3 receptor channels under physiological ionic conditions

    Get PDF
    The ubiquitous inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) channel, localized primarily in the endoplasmic reticulum (ER) membrane, releases Ca2+ into the cytoplasm upon binding InsP3, generating and modulating intracellular Ca2+ signals that regulate numerous physiological processes. Together with the number of channels activated and the open probability of the active channels, the size of the unitary Ca2+ current (iCa) passing through an open InsP3R channel determines the amount of Ca2+ released from the ER store, and thus the amplitude and the spatial and temporal nature of Ca2+ signals generated in response to extracellular stimuli. Despite its significance, iCa for InsP3R channels in physiological ionic conditions has not been directly measured. Here, we report the first measurement of iCa through an InsP3R channel in its native membrane environment under physiological ionic conditions. Nuclear patch clamp electrophysiology with rapid perfusion solution exchanges was used to study the conductance properties of recombinant homotetrameric rat type 3 InsP3R channels. Within physiological ranges of free Ca2+ concentrations in the ER lumen ([Ca2+]ER), free cytoplasmic [Ca2+] ([Ca2+]i), and symmetric free [Mg2+] ([Mg2+]f), the iCa–[Ca2+]ER relation was linear, with no detectable dependence on [Mg2+]f. iCa was 0.15 ± 0.01 pA for a filled ER store with 500 ”M [Ca2+]ER. The iCa–[Ca2+]ER relation suggests that Ca2+ released by an InsP3R channel raises [Ca2+]i near the open channel to ∌13–70 ”M, depending on [Ca2+]ER. These measurements have implications for the activities of nearby InsP3-liganded InsP3R channels, and they confirm that Ca2+ released by an open InsP3R channel is sufficient to activate neighboring channels at appropriate distances away, promoting Ca2+-induced Ca2+ release

    Studies on ATP-diphosphohydrolase nucleotide-binding sites by intrinsic fluorescence

    No full text
    Potato apyrase, a soluble ATP-diphosphohydrolase, was purified to homogeneity from several clonal varieties of Solanum tuberosum. Depending on the source of the enzyme, differences in kinetic and physicochemical properties have been described, which cannot be explained by the amino acid residues present in the active site. In order to understand the different kinetic behavior of the Pimpernel (ATPase/ADPase = 10) and Desirée (ATPase/ADPase = 1) isoenzymes, the nucleotide-binding site of these apyrases was explored using the intrinsic fluorescence of tryptophan. The intrinsic fluorescence of the two apyrases was slightly different. The maximum emission wavelengths of the Desirée and Pimpernel enzymes were 336 and 340 nm, respectively, suggesting small differences in the microenvironment of Trp residues. The Pimpernel enzyme emitted more fluorescence than the Desirée apyrase at the same concentration although both enzymes have the same number of Trp residues. The binding of the nonhydrolyzable substrate analogs decreased the fluorescence emission of both apyrases, indicating the presence of conformational changes in the neighborhood of Trp residues. Experiments with quenchers of different polarities, such as acrylamide, Cs+ and I- indicated the existence of differences in the nucleotide-binding site, as further shown by quenching experiments in the presence of nonhydrolyzable substrate analogs. Differences in the nucleotide-binding site may explain, at least in part, the kinetic differences of the Pimpernel and Desirée isoapyrases
    • 

    corecore