42 research outputs found

    A Real-Time PCR Array for Hierarchical Identification of Francisella Isolates

    Get PDF
    A robust, rapid and flexible real-time PCR assay for hierarchical genetic typing of clinical and environmental isolates of Francisella is presented. Typing markers were found by multiple genome and gene comparisons, from which 23 canonical single nucleotide polymorphisms (canSNPs) and 11 canonical insertion-deletion mutations (canINDELs) were selected to provide phylogenetic guidelines for classification from genus to isolate level. The specificity of the developed assay, which uses 68 wells of a 96-well real-time PCR format with a detection limit of 100 pg DNA, was assessed using 62 Francisella isolates of diverse genetic and geographical origins. It was then successfully used for typing 14 F. tularensis subsp. holarctica isolates obtained from tularemia patients in Sweden in 2008 and five more genetically diverse Francisella isolates of global origins. When applied to human ulcer specimens for direct pathogen detection the results were incomplete due to scarcity of DNA, but sufficient markers were identified to detect fine-resolution differences among F. tularensis subsp. holarctica isolates causing infection in the patients. In contrast to other real-time PCR assays for Francisella, which are typically designed for specific detection of a species, subspecies, or strain, this type of assay can be easily tailored to provide appropriate phylogenetic and/or geographical resolution to meet the objectives of the analysis

    Current efforts on microplastic monitoring in Arctic fish and how to proceed

    Get PDF
    In this review, we investigated published data on the occurrence of microplastic in Arctic fish, and the suitability of the data and species for risk assessment and monitoring. As of 11.11.2021, we found nine studies in the peer-reviewed literature, one thesis and one report, confirming the occurrence of microplastic in fishes from multiple Arctic regions. The studies varied in methodology, detection and quantification limitations, reported categories of size, shape, and chemical identity. All these factors influence the numbers of microplastic reported, thus limiting comparability and hindering integrative analysis. The physiological impacts of the reported microplastic contamination cannot be determined, as all studies targeted stomach/intestine contents and did not use methods with limits of detection low enough to determine particle translocation from the intestine to other organs, tissues or body fluids within the fish. Furthermore, there is a fundamental lack of understanding the transfer and the effects of plastic additives to Arctic fishes. In addition to discussing methodological challenges and knowledge gaps, we consider ecosystem needs, commercial interests, Indigenous people’s subsistence, food safety and food sovereignty concerns, and developed a framework to harmonize and facilitate pan-Arctic microplastic monitoring.Current efforts on microplastic monitoring in Arctic fish and how to proceedacceptedVersio

    Microlitter in Arctic marine benthic food chains and potential effects on sediment dwelling fauna

    Get PDF
    This report provides both field and impact data on microlitter pollution in the arctic marine environment of Svalbard and Greenland. Microlitter concentrations and characteristics were determined in marine sediments and biota in relation to local sources. Higher concentrations and diversities were found closer to human settlements and sites where lost/dumped fishing gear accumulated. Thus, local microlitter sources were found to be present in the Arctic. The experimental studies on effects of microlitter on feeding rate, microplastic ingestion, respiration and locomotion activity in an arctic amphipod, confirmed previous studies showing effects only at very high concentrations, not yet relevant in the arctic environment. The relatively low field concentrations of microlitter found in this study should be regarded as a ‘window of opportunity’ to act to at least reduce local pollution

    Microplastics in arctic invertebrates- Status on occurrence and recommendations for future monitoring

    Get PDF
    Few studies have been published on occurrence and distribution on microplastics (MPs) in invertebrates from the Arctic. We still need to develop harmonised methods to enable good comparison between studies taking into account recovery rates, size ranges, shapes and polymer types. Here, we review studies on MPs in invertebrates from the Arctic and present suggestions on sampling protocols and potential indicator species. Since information on MPs in Arctic invertebrates is vastly lacking, we recommend to at least include suspension feeding bivalves like mussels in monitoring programmes to function as indicator species in the Arctic. Mussels have also been suggested as indicator species for MP monitoring in coastal regions further south. Although we recognise the challenge with particle selection and egestion in mussels as well as the relatively low concentrations of MPs in Arctic waters, uptake levels seem to represent recent exposures. More research is needed to understand these selection processes and how they affect the bioaccumulation processes. Future research should include studies on whether different functional groups of invertebrates have different exposures to MPs, e.g., if there are differences between sessile versus motile species or different feeding strategies. More knowledge on monitoring strategies for pelagic and benthic species is needed.Microplastics in arctic invertebrates- Status on occurrence and recommendations for future monitoringpublishedVersio

    A temporal record of microplastic pollution in Mediterranean seagrass soils

    Get PDF
    © 2021 Elsevier Ltd Plastic pollution is emerging as a potential threat to the marine environment. In the current study, we selected seagrass meadows, known to efficiently trap organic and inorganic particles, to investigate the concentrations and dynamics of microplastics in their soil. We assessed microplastic contamination and accumulation in 210Pb dated soil cores collected in Posidonia oceanica meadows at three locations along the Spanish Mediterranean coast, with two sites located in the Almería region (Agua Amarga and Roquetas) and one at Cabrera Island (Santa Maria). Almería is known for its intense agricultural industry with 30 000 ha of plastic-covered greenhouses, while the Cabrera Island is situated far from urban areas. Microplastics were extracted using enzymatic digestion and density separation. The particles were characterized by visual identification and with Fourier-transformed infrared (FTIR) spectroscopy, and related to soil age-depth chronologies. Our findings showed that the microplastic contamination and accumulation was negligible until the mid-1970s, after which plastic particles increased dramatically, with the highest concentrations of microplastic particles (MPP) found in the recent (since 2012) surface soil of Agua Amarga (3819 MPP kg−1), followed by the top-most layers of the soil of the meadows in Roquetas (2173 kg−1) and Santa Maria (68–362 kg−1). The highest accumulation rate was seen in the Roquetas site (8832 MPP m−2 yr−1). The increase in microplastics in the seagrass soil was associated to land-use change following the intensification of the agricultural industry in the area, with a clear relationship between the development of the greenhouse industry in Almería and the concentration of microplastics in the historical soil record. This study shows a direct linkage between intense anthropogenic activity, an extensive use of plastics and high plastic contamination in coastal marine ecosystems such as seagrass meadows. We highlight the need of proper waste management to protect the coastal environment from continuous pollution

    The power of multi-matrix monitoring in the Pan-Arctic region: plastics in water and sediment

    Get PDF
    Litter and microplastic assessments are being carried out worldwide. Arctic ecosystems are no exception and plastic pollution is high on the Arctic Council's agenda. Water and sediment have been identified as two of the priority compartments for monitoring plastics under the Arctic Monitoring and Assessment Programme (AMAP). Recommendations for monitoring both compartments are presented in this publication. Alone, such samples can provide information on presence, fate, and potential impacts to ecosystems. Together, the quantification of microplastics in sediment and water from the same region produce a three-dimensional picture of plastics, not only a snapshot of floating or buoyant plastics in the surface water or water column but also a picture of the plastics reaching the shoreline or benthic sediments, in lakes, rivers, and the ocean. Assessment methodologies must be adapted to the ecosystems of interest to generate reliable data. In its current form, published data on plastic pollution in the Arctic is sporadic and collected using a wide spectrum of methods which limits the extent to which data can be compared. A harmonised and coordinated effort is needed to gather data on plastic pollution for the Pan-Arctic. Such information will aid in identifying priority regions and focusing mitigation efforts.publishedVersio

    Impacts of exhaust gas cleaning systems (EGCS) discharge waters on planktonic biological indicators

    Get PDF
    Exhaust Gas Cleaning Systems (EGCS), operating in open-loop mode, continuously release acidic effluents (scrubber waters) to marine waters. Furthermore, scrubber waters contain high concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and alkylated PAHs, potentially affecting the plankton in the receiving waters. Toxicity tests evidenced significant impairments in planktonic indicators after acute, early-life stage, and long-term exposures to scrubber water produced by a vessel operating with high sulphur fuel. Acute effects on bacterial bioluminescence (Aliivibrio fischeri), algal growth (Phaeodactylum tricornutum, Dunaliella tertiolecta), and copepod survival (Acartia tonsa) were evident at 10 % and 20 % scrubber water, while larval development in mussels (Mytilus galloprovincialis) showed a 50 % reduction at ∼5 % scrubber water. Conversely, larval development and reproductive success of A. tonsa were severely affected at scrubber water concentrations ≤1.1 %, indicating the risk of severe impacts on copepod populations which in turn may result in impairment of the whole food web
    corecore