165 research outputs found

    Jacobi stability of the vacuum in the static spherically symmetric brane world models

    Full text link
    We analyze the stability of the structure equations of the vacuum in the brane world models, by using both the linear (Lyapunov) stability analysis, and the Jacobi stability analysis, the Kosambi-Cartan-Chern (KCC) theory. In the brane world models the four dimensional effective Einstein equations acquire extra terms, called dark radiation and dark pressure, respectively, which arise from the embedding of the 3-brane in the bulk. Generally, the spherically symmetric vacuum solutions of the brane gravitational field equations, have properties quite distinct as compared to the standard black hole solutions of general relativity. We close the structure equations by assuming a simple linear equation of state for the dark pressure. In this case the vacuum is Jacobi stable only for a small range of values of the proportionality constant relating the dark pressure and the dark radiation. The unstable trajectories on the brane behave chaotically, in the sense that after a finite radial distance it would be impossible to distinguish the trajectories that were very near each other at an initial point. Hence the Jacobi stability analysis offers a powerful method for constraining the physical properties of the vacuum on the brane.Comment: 21 pages, 3 figures, accepted for publication in PR

    Gravitational radiation reaction in compact binary systems: Contribution of the quadrupole-monopole interaction

    Get PDF
    The radiation reaction in compact spinning binaries on eccentric orbits due to the quadrupole-monopole interaction is studied. This contribution is of second post-Newtonian order. As result of the precession of spins the magnitude LL of the orbital angular momentum is not conserved. Therefore a proper characterization of the perturbed radial motion is provided by the energy EE and angular average Lˉ\bar{L}. As powerful computing tools, the generalized true and eccentric anomaly parametrizations are introduced. Then the secular losses in energy and magnitude of orbital angular momentum together with the secular evolution of the relative orientations of the orbital angular momentum and spins are found for eccentric orbits by use of the residue theorem. The circular orbit limit of the energy loss agrees with Poisson's earlier result.Comment: accepted for publication in Phys. Rev.

    Renormalized spin coefficients in the accumulated orbital phase for unequal mass black hole binaries

    Get PDF
    We analyze galactic black hole mergers and their emitted gravitational waves. Such mergers have typically unequal masses with mass ratio of the order 1/10. The emitted gravitational waves carry the inprint of spins and mass quadrupoles of the binary components. Among these contributions, we consider here the quasi-precessional evolution of the spins. A method of taking into account these third post-Newtonian (3PN) effects by renormalizing (redefining) the 1.5 PN and 2PN accurate spin contributions to the accumulated orbital phase is developed.Comment: 10 pages, to appear in Class. Quantum Grav. GWDAW13 Proceedings Special Issue, v2: no typos conjectur

    The structural basis of small molecule targetability of monomeric Tau protein

    Get PDF
    The therapeutic targeting of intrinsically disordered proteins (IDPs) by small molecules has been a challenge due to their heterogeneous conformational ensembles. A potential therapeutic strategy to alleviate the aggregation of IDPs is to maintain them in their native monomeric state by small molecule binding. This study investigates the structural basis of small molecule druggability of native monomeric Tau whose aggregation is linked to the onset of Tauopathies such as Alzheimer’s disease. Initially, two available monomeric conformational ensembles of a shorter Tau construct K18 (also termed Tau4RD) were analyzed which revealed striking structural differences between the two ensembles, while similar number of hot spots and small molecule binding sites were identified on monomeric Tau ensembles as on tertiary folded proteins of similar size. Remarkably, some critical fibril forming sequence regions of Tau (V306-K311, V275-K280) participated in hot spot formation with higher frequency compared to other regions. As an example of small molecule binding to monomeric Tau, it was shown that methylene blue (MB) bound to monomeric K18 and full-length Tau selectively with high affinity (Kd = 125.8 nM and 86.6 nM, respectively) with binding modes involving Cys291 and Cys322, previously reported to be oxidized in the presence of MB. Overall, our results provide structure-based evidence that Tau can be a viable drug target for small molecules and indicate that specific small molecules may be able to bind to monomeric Tau and influence the way in which the protein interacts among itself and with other proteins

    Density growth in Kantowski-Sachs cosmologies with cosmological constant

    Full text link
    In this work the growth of density perturbations in Kantowski-Sachs cosmologies with a positive cosmological constant is studied, using the 1+3 and 1+1+2 covariant formalisms. For each wave number we obtain a closed system for scalars formed from quantities that are zero on the background and hence are gauge-invariant. The solutions to this system are then analyzed both analytically and numerically. In particular the effects of anisotropy and the behaviour close to a bounce in the cosmic scale factor are considered. We find that typically the density gradient in the bouncing directions experiences a local maximum at or slightly after the bounce.Comment: 33 pages, 17 picture

    Gravitational radiation reaction in compact binary systems: Contribution of the magnetic dipole-magnetic dipole interaction

    Full text link
    We study the gravitational radiation reaction in compact binary systems composed of neutron stars with spin and huge magnetic dipole moments (magnetars). The magnetic dipole moments undergo a precessional motion about the respective spins. At sufficiently high values of the magnetic dipole moments, their interaction generates second post-Newtonian order contributions both to the equations of motion and to the gravitational radiation escaping the system. We parametrize the radial motion and average over a radial period in order to find the secular contributions to the energy and magnitude of the orbital angular momentum losses, in the generic case of \textit{eccentric} orbits. Similarly as for the spin-orbit, spin-spin, quadrupole-monopole interactions, here too we deduce the secular evolution of the relative orientations of the orbital angular momentum and spins. These equations, supplemented by the evolution equations for the angles characterizing the orientation of the dipole moments form a first order differential system, which is closed. The circular orbit limit of the energy loss agrees with Ioka and Taniguchi's earlier result

    Inflation and late time acceleration in braneworld cosmological models with varying brane tension

    Get PDF
    Braneworld models with variable brane tension λ\lambda introduce a new degree of freedom that allows for evolving gravitational and cosmological constants, the latter being a natural candidate for dark energy. We consider a thermodynamic interpretation of the varying brane tension models, by showing that the field equations with variable λ\lambda can be interpreted as describing matter creation in a cosmological framework. The particle creation rate is determined by the variation rate of the brane tension, as well as by the brane-bulk energy-matter transfer rate. We investigate the effect of a variable brane tension on the cosmological evolution of the Universe, in the framework of a particular model in which the brane tension is an exponentially dependent function of the scale factor. The resulting cosmology shows the presence of an initial inflationary expansion, followed by a decelerating phase, and by a smooth transition towards a late accelerated de Sitter type expansion. The varying brane tension is also responsible for the generation of the matter in the Universe (reheating period). The physical constraints on the model parameters, resulted from the observational cosmological data, are also investigated.Comment: 25 pages, 8 figures, accepted for publication in European Physical Journal

    A compact multifunctional microfluidic platform for exploring cellular dynamics in real-time using electrochemical detection

    Get PDF
    Downscaling of microfluidic cell culture and detection devices for electrochemical monitoring has mostly focused on miniaturization of the microfluidic chips which are often designed for specific applications and therefore lack functional flexibility. We present a compact microfluidic cell culture and electrochemical analysis platform with in-built fluid handling and detection, enabling complete cell based assays comprising on-line electrode cleaning, sterilization, surface functionalization, cell seeding, cultivation and electrochemical real-time monitoring of cellular dynamics. To demonstrate the versatility and multifunctionality of the platform, we explored amperometric monitoring of intracellular redox activity in yeast (Saccharomyces cerevisiae) and detection of exocytotically released dopamine from rat pheochromocytoma cells (PC12). Electrochemical impedance spectroscopy was used in both applications for monitoring cell sedimentation and adhesion as well as proliferation in the case of PC12 cells. The influence of flow rate on the signal amplitude in the detection of redox metabolism as well as the effect of mechanical stimulation on dopamine release were demonstrated using the programmable fluid handling capability. The here presented platform is aimed at applications utilizing cell based assays, ranging from e.g. monitoring of drug effects in pharmacological studies, characterization of neural stem cell differentiation, and screening of genetically modified microorganisms to environmental monitoring

    Swift follow-up observations of candidate gravitational-wave transient events

    Get PDF
    We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors and their candidate sky locations were observed by the Swift observatory. Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge". With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.Comment: Submitted for publication 2012 May 25, accepted 2012 October 25, published 2012 November 21, in ApJS, 203, 28 ( http://stacks.iop.org/0067-0049/203/28 ); 14 pages, 3 figures, 6 tables; LIGO-P1100038; Science summary at http://www.ligo.org/science/Publication-S6LVSwift/index.php ; Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p110003
    corecore