34 research outputs found

    Network planning by the extended metra potential method (EMPM)

    Get PDF

    Finding cliques in an undirected graph

    Get PDF

    Netwerkplanning volgens de methode extended MPM

    Get PDF

    Inleiding discrete simulatie : projekt O.R. 1

    Get PDF

    De decompositie van een gerichte graaf in zijn sterke componenten

    Get PDF

    The Fuzzy Project Scheduling Problem with Minimal Generalized Precedence Relations

    Full text link
    In scheduling, estimations are affected by the imprecision of limited information on future events, and the reduction in the number and level of detail of activities. Overlapping of processes and activities requires the study of their continuity, along with analysis of the risks associated with imprecision. In this line, this paper proposes a fuzzy heuristic model for the Project Scheduling Problem with flows and minimal feeding, time and work Generalized Precedence Relations with a realistic approach to overlapping, in which the continuity of processes and activities is allowed in a discretionary way. This fuzzy algorithm handles the balance of process flows, and computes the optimal fragmentation of tasks, avoiding the interruption of the critical path and reverse criticality. The goodness of this approach is tested on several problems found in the literature; furthermore, an example of a 15-story building was used to compare the better performance of the algorithm implemented in Visual Basic for Applications (Excel) over that same example input in Primavera© P6 Professional V8.2.0, using five different scenarios.This research was supported by the FAPA program of Universidad de Los Andes, Colombia. The authors would like to thank the research group of Construction Engineering and Management (INgeco) of Universidad de Los Andes, and the five anonymous referees for their helpful and constructive suggestions.Ponz Tienda, JL.; Pellicer Armiñana, E.; Benlloch Marco, J.; Andrés Romano, C. (2015). The Fuzzy Project Scheduling Problem with Minimal Generalized Precedence Relations. Computer-Aided Civil and Infrastructure Engineering. 30(11):872-891. doi:10.1111/mice.12166S8728913011Adeli, H., & Park, H. S. (1995). Optimization of space structures by neural dynamics. Neural Networks, 8(5), 769-781. doi:10.1016/0893-6080(95)00026-vAdeli, H., & Karim, A. (1997). Scheduling/Cost Optimization and Neural Dynamics Model for Construction. Journal of Construction Engineering and Management, 123(4), 450-458. doi:10.1061/(asce)0733-9364(1997)123:4(450)Adeli, H., & Wu, M. (1998). Regularization Neural Network for Construction Cost Estimation. Journal of Construction Engineering and Management, 124(1), 18-24. doi:10.1061/(asce)0733-9364(1998)124:1(18)Alarcón, L. F., Ashley, D. B., de Hanily, A. S., Molenaar, K. R., & Ungo, R. (2011). Risk Planning and Management for the Panama Canal Expansion Program. Journal of Construction Engineering and Management, 137(10), 762-771. doi:10.1061/(asce)co.1943-7862.0000317Ammar, M. A. (2013). LOB and CPM Integrated Method for Scheduling Repetitive Projects. Journal of Construction Engineering and Management, 139(1), 44-50. doi:10.1061/(asce)co.1943-7862.0000569Arditi, D., & Bentotage, S. N. (1996). System for Scheduling Highway Construction Projects. Computer-Aided Civil and Infrastructure Engineering, 11(2), 123-139. doi:10.1111/j.1467-8667.1996.tb00316.xBai, L., Yan, L., & Ma, Z. M. (2014). Querying fuzzy spatiotemporal data using XQuery. Integrated Computer-Aided Engineering, 21(2), 147-162. doi:10.3233/ica-130454Ballesteros-Pérez, P., González-Cruz, M. C., Cañavate-Grimal, A., & Pellicer, E. (2013). Detecting abnormal and collusive bids in capped tendering. Automation in Construction, 31, 215-229. doi:10.1016/j.autcon.2012.11.036Bartusch, M., Möhring, R. H., & Radermacher, F. J. (1988). Scheduling project networks with resource constraints and time windows. Annals of Operations Research, 16(1), 199-240. doi:10.1007/bf02283745Bianco, L., & Caramia, M. (2011). Minimizing the completion time of a project under resource constraints and feeding precedence relations: a Lagrangian relaxation based lower bound. 4OR, 9(4), 371-389. doi:10.1007/s10288-011-0168-6Bonnal, P., Gourc, D., & Lacoste, G. (2004). Where Do We Stand with Fuzzy Project Scheduling? Journal of Construction Engineering and Management, 130(1), 114-123. doi:10.1061/(asce)0733-9364(2004)130:1(114)Brunelli, M., & Mezei, J. (2013). How different are ranking methods for fuzzy numbers? A numerical study. International Journal of Approximate Reasoning, 54(5), 627-639. doi:10.1016/j.ijar.2013.01.009Buckley, J. J., & Eslami, E. (2002). An Introduction to Fuzzy Logic and Fuzzy Sets. doi:10.1007/978-3-7908-1799-7Castro-Lacouture, D., Süer, G. A., Gonzalez-Joaqui, J., & Yates, J. K. (2009). Construction Project Scheduling with Time, Cost, and Material Restrictions Using Fuzzy Mathematical Models and Critical Path Method. Journal of Construction Engineering and Management, 135(10), 1096-1104. doi:10.1061/(asce)0733-9364(2009)135:10(1096)Chanas, S., & Kamburowski, J. (1981). The use of fuzzy variables in pert. Fuzzy Sets and Systems, 5(1), 11-19. doi:10.1016/0165-0114(81)90030-0In Seong Chang, Yasuhiro Tsujimura, Mitsuo Gen, & Tatsumi Tozawa. (1995). An efficient approach for large scale project planning based on fuzzy Delphi method. Fuzzy Sets and Systems, 76(3), 277-288. doi:10.1016/0165-0114(94)00385-4Chen, C.-T., & Huang, S.-F. (2007). Applying fuzzy method for measuring criticality in project network. Information Sciences, 177(12), 2448-2458. doi:10.1016/j.ins.2007.01.035Shyi-Ming Chen, & Tao-Hsing Chang. (2001). Finding multiple possible critical paths using fuzzy PERT. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 31(6), 930-937. doi:10.1109/3477.969496Damci, A., Arditi, D., & Polat, G. (2013). Resource Leveling in Line-of-Balance Scheduling. Computer-Aided Civil and Infrastructure Engineering, 28(9), 679-692. doi:10.1111/mice.12038Dell’Orco, M., & Mellano, M. (2013). A New User-Oriented Index, Based on a Fuzzy Inference System, for Quality Evaluation of Rural Roads. Computer-Aided Civil and Infrastructure Engineering, 28(8), 635-647. doi:10.1111/mice.12021Deng, H. (2014). Comparing and ranking fuzzy numbers using ideal solutions. Applied Mathematical Modelling, 38(5-6), 1638-1646. doi:10.1016/j.apm.2013.09.012De Reyck, B., & Herroelen, willy. (1998). A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations. European Journal of Operational Research, 111(1), 152-174. doi:10.1016/s0377-2217(97)00305-6De Reyck, B., & Herroelen, W. (1999). The multi-mode resource-constrained project scheduling problem with generalized precedence relations. European Journal of Operational Research, 119(2), 538-556. doi:10.1016/s0377-2217(99)00151-4Dubois, D., Fargier, H., & Galvagnon, V. (2003). On latest starting times and floats in activity networks with ill-known durations. European Journal of Operational Research, 147(2), 266-280. doi:10.1016/s0377-2217(02)00560-xElmaghraby, S. E., & Kamburowski, J. (1992). The Analysis of Activity Networks Under Generalized Precedence Relations (GPRs). Management Science, 38(9), 1245-1263. doi:10.1287/mnsc.38.9.1245Fondahl , J. W. 1961 A Non-Computer Approach to the Critical Path Method for the Construction IndustryFougères, A.-J., & Ostrosi, E. (2013). Fuzzy agent-based approach for consensual design synthesis in product configuration. Integrated Computer-Aided Engineering, 20(3), 259-274. doi:10.3233/ica-130434Gil-Aluja, J. (2004). Fuzzy Sets in the Management of Uncertainty. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-39699-4Hajdu, M. (1997). Network Scheduling Techniques for Construction Project Management. Nonconvex Optimization and Its Applications. doi:10.1007/978-1-4757-5951-8Harris, R. B., & Ioannou, P. G. (1998). Scheduling Projects with Repeating Activities. Journal of Construction Engineering and Management, 124(4), 269-278. doi:10.1061/(asce)0733-9364(1998)124:4(269)Hejducki, Z. (2004). Sequencing problems in methods of organising construction processes. Engineering, Construction and Architectural Management, 11(1), 20-32. doi:10.1108/09699980410512638Hebert, J. E., & Deckro, R. F. (2011). Combining contemporary and traditional project management tools to resolve a project scheduling problem. Computers & Operations Research, 38(1), 21-32. doi:10.1016/j.cor.2009.12.004Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165(2), 289-306. doi:10.1016/j.ejor.2004.04.002IBM 1968Jahani, E., Muhanna, R. L., Shayanfar, M. A., & Barkhordari, M. A. (2013). Reliability Assessment with Fuzzy Random Variables Using Interval Monte Carlo Simulation. Computer-Aided Civil and Infrastructure Engineering, 29(3), 208-220. doi:10.1111/mice.12028Karim, A., & Adeli, H. (1999). OO Information Model for Construction Project Management. Journal of Construction Engineering and Management, 125(5), 361-367. doi:10.1061/(asce)0733-9364(1999)125:5(361)Karim, A., & Adeli, H. (1999). CONSCOM: An OO Construction Scheduling and Change Management System. Journal of Construction Engineering and Management, 125(5), 368-376. doi:10.1061/(asce)0733-9364(1999)125:5(368)KARIM, A., & ADELI, H. (1999). A new generation software for construction scheduling and management. Engineering, Construction and Architectural Management, 6(4), 380-390. doi:10.1108/eb021126Kim, S.-G. (2012). CPM Schedule Summarizing Function of the Beeline Diagramming Method. Journal of Asian Architecture and Building Engineering, 11(2), 367-374. doi:10.3130/jaabe.11.367Kis, T. (2005). A branch-and-cut algorithm for scheduling of projects with variable-intensity activities. Mathematical Programming, 103(3), 515-539. doi:10.1007/s10107-004-0551-6Kolisch, R., & Sprecher, A. (1997). PSPLIB - A project scheduling problem library. European Journal of Operational Research, 96(1), 205-216. doi:10.1016/s0377-2217(96)00170-1Krishnan, V., Eppinger, S. D., & Whitney, D. E. (1997). A Model-Based Framework to Overlap Product Development Activities. Management Science, 43(4), 437-451. doi:10.1287/mnsc.43.4.437LEACHMAN, R. C., DTNCERLER, A., & KIM, S. (1990). Resource-Constrained Scheduling of Projects with Variable-Intensity Activities. IIE Transactions, 22(1), 31-40. doi:10.1080/07408179008964155Lim, T.-K., Yi, C.-Y., Lee, D.-E., & Arditi, D. (2014). Concurrent Construction Scheduling Simulation Algorithm. Computer-Aided Civil and Infrastructure Engineering, 29(6), 449-463. doi:10.1111/mice.12073Long, L. D., & Ohsato, A. (2008). Fuzzy critical chain method for project scheduling under resource constraints and uncertainty. International Journal of Project Management, 26(6), 688-698. doi:10.1016/j.ijproman.2007.09.012Lootsma, F. A. (1989). Stochastic and fuzzy Pert. European Journal of Operational Research, 43(2), 174-183. doi:10.1016/0377-2217(89)90211-7Malcolm, D. G., Roseboom, J. H., Clark, C. E., & Fazar, W. (1959). Application of a Technique for Research and Development Program Evaluation. Operations Research, 7(5), 646-669. doi:10.1287/opre.7.5.646Maravas, A., & Pantouvakis, J.-P. (2011). Fuzzy Repetitive Scheduling Method for Projects with Repeating Activities. Journal of Construction Engineering and Management, 137(7), 561-564. doi:10.1061/(asce)co.1943-7862.0000319PONZ TIENDA, J. L., BENLLOCH MARCO, J., ANDRÉS ROMANO, C., & SENABRE, D. (2011). Un algoritmo matricial RUPSP / GRUPSP «sin interrupción» para la planificación de la producción bajo metodología Lean Construction basado en procesos productivos. Revista de la construcción, 10(2), 90-103. doi:10.4067/s0718-915x2011000200009Ponz-Tienda, J. L., Pellicer, E., & Yepes, V. (2012). Complete fuzzy scheduling and fuzzy earned value management in construction projects. Journal of Zhejiang University SCIENCE A, 13(1), 56-68. doi:10.1631/jzus.a1100160Ponz-Tienda, J. L., Yepes, V., Pellicer, E., & Moreno-Flores, J. (2013). The Resource Leveling Problem with multiple resources using an adaptive genetic algorithm. Automation in Construction, 29, 161-172. doi:10.1016/j.autcon.2012.10.003Prade, H. (1979). Using fuzzy set theory in a scheduling problem: A case study. Fuzzy Sets and Systems, 2(2), 153-165. doi:10.1016/0165-0114(79)90022-8Quintanilla, S., Pérez, Á., Lino, P., & Valls, V. (2012). Time and work generalised precedence relationships in project scheduling with pre-emption: An application to the management of Service Centres. European Journal of Operational Research, 219(1), 59-72. doi:10.1016/j.ejor.2011.12.018Rommelfanger, H. J. (1994). Network analysis and information flow in fuzzy environment. Fuzzy Sets and Systems, 67(1), 119-128. doi:10.1016/0165-0114(94)90212-7Senouci, A. B., & Adeli, H. (2001). Resource Scheduling Using Neural Dynamics Model of Adeli and Park. Journal of Construction Engineering and Management, 127(1), 28-34. doi:10.1061/(asce)0733-9364(2001)127:1(28)Seppänen, O., Evinger, J., & Mouflard, C. (2014). Effects of the location-based management system on production rates and productivity. Construction Management and Economics, 32(6), 608-624. doi:10.1080/01446193.2013.853881Shi, Q., & Blomquist, T. (2012). A new approach for project scheduling using fuzzy dependency structure matrix. International Journal of Project Management, 30(4), 503-510. doi:10.1016/j.ijproman.2011.11.003Srour, I. M., Abdul-Malak, M.-A. U., Yassine, A. A., & Ramadan, M. (2013). A methodology for scheduling overlapped design activities based on dependency information. Automation in Construction, 29, 1-11. doi:10.1016/j.autcon.2012.08.001Valls, V., & Lino, P. (2001). Annals of Operations Research, 102(1/4), 17-37. doi:10.1023/a:1010941729204Valls, V., Mart�, R., & Lino, P. (1996). A heuristic algorithm for project scheduling with splitting allowed. Journal of Heuristics, 2(1), 87-104. doi:10.1007/bf00226294Wang, Y.-M., Yang, J.-B., Xu, D.-L., & Chin, K.-S. (2006). On the centroids of fuzzy numbers. Fuzzy Sets and Systems, 157(7), 919-926. doi:10.1016/j.fss.2005.11.006Wiest, J. D. (1981). Precedence diagramming method: Some unusual characteristics and their implications for project managers. Journal of Operations Management, 1(3), 121-130. doi:10.1016/0272-6963(81)90015-2Yan, L., & Ma, Z. M. (2013). Conceptual design of object-oriented databases for fuzzy engineering information modeling. Integrated Computer-Aided Engineering, 20(2), 183-197. doi:10.3233/ica-130427Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-xZeng, Z., Xu, J., Wu, S., & Shen, M. (2014). Antithetic Method-Based Particle Swarm Optimization for a Queuing Network Problem with Fuzzy Data in Concrete Transportation Systems. Computer-Aided Civil and Infrastructure Engineering, 29(10), 771-800. doi:10.1111/mice.12111Zhang, X., Li, Y., Zhang, S., & Schlick, C. M. (2013). Modelling and simulation of the task scheduling behavior in collaborative product development process. Integrated Computer-Aided Engineering, 20(1), 31-44. doi:10.3233/ica-12041
    corecore