

Finding cliques in an undirected graph

Citation for published version (APA):
Bron, C., Kerbosch, J. A. G. M., & Schell, H. J. (1972). Finding cliques in an undirected graph. (TH Eindhoven.
ORS, Vakgr. operationele research : rapport; Vol. BKS-1). Technische Hogeschool Eindhoven.

Document status and date:
Published: 01/01/1972

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/7d28fff8-2e93-44ad-9ad2-7f3318509fac

~
BIBL. TECHNISCHE
UNIVERSITEIT

I I
9612427

EINDHOVEN

FINDING CLIQUES IN A UNDIRECTED GRAPH

door

Bron, C.

Kerbosch, J.A.G.M.

Schell, H.J.

Rapport BKS - 1

Februari 1972

Department of Mathematics

Group: Fundamental Progrannning

Department of Industrial Engineering

Group: Operations Research

Contents

1. Introduction

2. Algorithms

3. Discussion of comperative tests

4. Acknowledgements

5. References

6. Appendix

Page

7

12

12

13

-1-

I. Lnlrotluction.

In 1970 Poeth [7] , a student at the department of Industrial Engineering

asked us to develop an algorithm for finding all cliques in an undirected

graph. He needed the results for analysing the data of a sociological

survey in an organisation. These data resulted in a symmetrical incidence­

matrix, i.e.: if in a test the mutual appreciation of person i and person

j was significant then the element (i, j) was set to "I" otherwise to "0".

The cliques were defined as non-extendable groups such that each pair of

persons within the group had a good relationship. The problem of finding

cliques is the same as finding maximum complete subgraphs in a graph.

The same sociological method was used by Schaay [8] . In a computer-

program he listed all complete subgraphs of 3 vertices and constructed

the maximal complete subgraphs from this list by hand, a tedious task.

At the department of Industrial Engineering, a back-tracking algorithm

was developed, based on the concepts, developed in [4J . Later on, this

algorithm was improved considerably in collaboration with the group Fundamental

Programming of the Department of Mathematics, leading to two algorithms.

2. Algorithms.

The following algorithms generate all maximal complete subgraphs of a given

undirected graph. A maximal complete subgraph is a complete subgraph that

cannot be extended with another point of the mother graph and yet remain

complete. In the following we will term such a maximal complete subgraph

a clique.

Both algorithms are ~n essence backtracking algorithms, using a "branch and

bound" technique [4] to cut off branches that cannot lead to a clique. The

first version, to be described directly below, is a straightforwaid

implementation of the algorithm, and generates all cliques in alphabetic

(lexicographic) order. The second version is based on the first and generates

cliques in a rather unpredictable order in an attempt to minimize the number

of branches to be traversed. Performance tests on graphs containing a large

number of cliques have shown the second version to be far superoir (a

performance factor of up to 5 has been encountered). Nevertheless it is

felt that both versions should be presented in order to explain the algorithm.

-2-

Three sets play an important role in the algorithm, viz.

I) the set "compsub": _the set to be extended by a new point or shrunk by one

point on travelling along the branches of the backtracking tree.

The points that are eligible to extend "compsub", i.e. that are connected

to all points in "compsub", are collected recursively ~n two sets, viz.

2) the set "candidates": the set of all points that will in due time serve

as an extension to the present configuration of "compsub".

3) the set "not": the set of all points that have at an earlier stage already

served as an extension to the present configuration of "compsub" and are

now explicitly excluded. The reason for maintaining the set "not" will

soon be made clear.

The core of the algorithm consists of a recursively defined extension operator

that will be applied to the three sets just described. It has the duty to

generate all extensions of the given configuration of "compsub" that it can

make with the given set of candidates, and that do not contain any of the

points in "not". To put it differently: all extensions of "compsub" containing

any point in "not" have already been generated. The basic mechanism now

consists of the following 5 steps:

I: selection of a candidate

2: adding the selected candidate to "compsub"

3: creating new sets "candidates" and "not" from the old sets by removing all

points not connected to the selected candidate (to remain consistent with

the definition), thereby keeping the old sets in tact

4: calling the extension operator

5: upon return the selected condidate is removed from "compsub" and moved

into the old set "not".

We will now motivate the extra labour involved in recursively maintaining

the sets "not".

A necessary condition for having created a clique is that the set "candidates"

be empty, otherwise "compsub" could still be extended. This condition however

~s not sufficient, because, if at this stage the set "not" is non-empty, we

know from the definition of "not" that the present configuration of "compsub'"

has at an earlier stage been contained in another configuration and ~s

therefore not maximal. We may now state that "comsub" is a clique as soon as

both "not" and "candidates" are empty.

-3-

If at some stage we have a set "not" containing a point connected to

all points in "candidates" we can predict that further extensions

(further selection of candidates) will never lead to the removal

(in step 3) of that particular point from subsequent configurations

of "not". Such extensions will not lead to an empty set "not", and

therefore not to a clique. This is the "branch and bound" method

which enables us to detect in an early stage branches of the backtracking

tree that do not lead to successful endpoints.

A few more remarks about the implementation of the algorithm seem ~n

place.

The set "compsub" behaves like a stack and can be maintained and updated

in the form of a global array.

The sets "candidates" and "not" are handed to the extension operator

as a parameter. The operator then declares a local array in which the

new sets are built up that will be handed to the inner call. Both sets

are stored in a single one-dimensional array with the following layout:

"not" "candidates"

index values: 1 ., •••••••••••• •ne ce .

From this the following properties may be derived:

1) ne < ce

2) ne = ce "candidates" empty

3) ne = 0 "not" empty

4) ce = 0 "not" empty, "candidates" empty -+ clique found

If the selected candidate is in array position ne + 1 then the second

part of step 5 is implemented as "ne := ne + 1".

Using "ne + 1" as selected candidate never gives rise to internal shuffling

and therefore all cliques are generated in a lexicographic ordering

according to the initial ordering of the candidates (all points) in

the outer call.

We will first present the main procedure, and then seperately, the text

of the extension operator for both versions of the algorithm.

procedure outpuL maximal cOJIIIJletc fJuugru;phs (connected, N); vulue N;

integer N; c.omment number of points in graph;

boolean array connected; comment symmetrical matrix;

begirt integer array ALL. compsub[l : N]; integer c;

procedure extend(old, ne, ce); value ne, ce; integer ne, ce;

integer array old;

"BODY OF extend"-,
1Q!: c: =1 step 1 wtil N £Q. ALL['c]: =c; c: =0;

comment initially all points are connected to the points ~n the empty set

" compsub" and hence candidates;

extend(ALL. 0, N)

~ output maximal complete subgraphs;

procedure extend(old, ne, ce); value ne, ce; integer ne, ce; integer array old;

BODY OF extend VERSION 1 :

begin integer array newel : ceJ;

comment in the worst case the new sets will be almost as large as the old ones;

boolean allcon, sucexp; integer i, j, p, sel, newne, newce;

repeat TEST IF sucCES MAY BE expECTED FROM FURTHER EXTENSION:

sucexp:~; i:=O;

SCAN not: while sucexp ~ (i:=i + 1) < ne £Q.
begin p:=old[i.]; allcon:~; j :=ne;

SCAN candidates: while allcon ~ (j:=j +1) ~ ce £Q. allcon:=connected[p, old[j]J;

sucexp:= ugi allcon

end;

if sucexp do

begin SELECT CANDIDATE: sel:=old[ne +lJ;

newne:= i:= 0;

FILL NE'" SET not: While (i :=i + .1) ~ ne .9£
if connected[sel, (p:=old[i.})] .9£ new[(newne:=newne + n]:=p;

newce:=newne; comment selected candidate is skipped;

FILL NEVT SET cand: while (i:=i +1) ~ ce .9£
if connected[sel, (p:=old[i])] £Q. new[(newce:=newce + n]:=p;

ADD TO compsub: compsub[(c:=c + f)J:= sel;

if newce = 0~ OUTPUT VALUES OF compsub 1 THROUGH c

~ if newne < newce do extend(ne,v, newne, newce);

REl>DVE FROM compsub: c: = c - 1;

ADD TO not: ne : = ne + 1;

~.

. wtil !!2.i sucexp

~ extend VERSION 1;

-5-

The s.econd version of the algorithm does not select the candidate in position

"ne + 1", but a well chosen candidate from position, say "s". In order to be

able to complete step 5 as simply as described above, elements "s" and "ne + 1"

will be interchanged as soon as selection has taken place. This interchange

does not affect the set "candidates" since- there is no implicit ordering. The

selection does affect, however,the order in which the cliques are eventually

generated.

Now, what do we mean by "well chosen"?

The object we have in mind is to minimize the number of repetitions of steps

1 through 5 inside the extension operator. The repetitions terminate as soon

as the "bound condition" is reached. We recall that the bound condition 1S

formulated as: there exists a point 1n "not" connected to all points in

"candidates". We would like the existence of such a point to come about

at the earliest possible stage.

Let us assume that with every point in "not" is associated a counter, counting

the number of points in "candidates" to which this point is not connected (the

number of disconnections). Moving a selected candidate into "not" (this occurs

after extension) decreases by one all counters of the points in "not" to which
I

it is disconnected and introduces a new counter of its own. Note that no counter

is ever decreased by more than one at any instant. Whenever a counter goes to

zero the bound condition has been reached.

Now let us fix one particular point in "not". If we keep selecting candidates

disconnected to this fixed point the counter of the fixed point will be decrease,

by one at every repetition. No other counter can be decreased more rapidly.

If, to begin with, the fixed point has the lowest counter, no other counter can

reach zero sooner, as long as the counters for points newly added to "not"

cannot be smaller.

We see to the above requirement upon entry the extension operator, where the

fixed point is taken either from "not" or from the original "candidates",

whichever point yields the lowest counter value after the first addition to "not'

From that moment on we only keep track of this one counter, decreasing it for

every next selection, since we will only select disconnected points.

We will now present the optimized version of the extension operator (see next

page):

-G-
procedure extenJ.(olJ., ne, co). voJ..ue ne, ce; integer ne, ce; integer arra.y 01<1;

BODY OF extend VEHSION 2 :

begin integer arrgy new[1, : ceJ; integer nod, fixp;

integer newne, newce, i, j, count, pos, p, s, sel, minnod;

comment the latter set of integers is local in scope, but need not be

declared recursively;

minnod:=cej i:=1; nod:=O;

SET INITIAL nod VALUE:

repeat DRrERMINE EACH COUNTER VALUE .AND LOOK FOR MINH1UN:

p:=old[iJ; count:=O; j :=ne;

COUNT DISCONNECTIONS: repeat j: =j + 1;

if !!.Qi connected[p., old[j]J ~

begin count: =count + 1;

SAVE POSITION OF POTENTIAL CANDIDATE: pos:=j

TEST NEW MINIMUM:

~

until j=ce;

if count < minnod .9£
begin fixp:=p; minnod:=count;

if i ~ ne~ s:=pos

~ begin s: =i; PREINCREASE : nod: =1 ~

end--,
i:= i + 1

tmtil i > ce 2!:. minnod = 0;

nod:=minnod + nod;

comment possible pre-incease by one if fixed point initially in »candidates»;

while nod > 0 ~

begin INTERCHANGE: p:=Old[s,J; old[S.]:=old[ne+'1]; sel:=01d[ne+1]:=p;

newne:=i:=O;

FILL NE\v SET not: While (i:=i +1) ~ ne ££
if connected[sel, (p:=old[i.])J £Q. new[(newne:=newne + 1)J:=p;

newce:=newne;

comment next i-increase will skip over selected candidate;

FILL NEW SET cand: while (i :=i +1) ~ ce £!Q.

if connected[sel, (p:=old[iJ)] .9£ new[(newce:=newce + f)]:=p;

ADD TO compsub: compsub[(.c:=c + 1">J:=sel;

if newce = 0~ OUTPUT VALUES OF compsub 1 THROUGH c

else if newne < newce .Q£. extend(ne'lv, newne, newce);

REMOVE FROH compsub: c: =c - 1; ADD TO not: ne: =ne + 1;

if (nod:=nod - 1) > 0 .Q£.

begin SELECT A CANDIDATE DISCONNECTED TO THE FIXED POINT:

s: =ne; repeat s: =s + 1 until not connected[:f.ixp, old[s] J

-7-

3. Discussion of comperative tests.

Augustson and Minker [1] have evaluated a number of clique finding techniques

and report an algorithm by Bierstone [2] as being the most efficient one.

In order to evaluate the performance of the new algorithms we implemented

h
. . x) . .

t e B~erstone algor~thm and ran the three algor~thms on two rather d~fferent

testcases under the ALGOL system for the EL-X8.

For our first testcase we considered random graphs+) ranging ~n dimension

from 10 to 50 nodes. For each dimension we generated a collection of graphs

where the percentage of edges took on the following values: 10, 30, 50, 70,

90, 95. The CPU time per clique for each dimension was averaged over such a

collection. The results are graphically represented ~n fig. 1. This averaging

hides the influence of the percentage of edges (p); the tendency, shown ~n

fig. 1 becomes more significant with increasing p. (See Appendix).

The detailed figures (appendix) showed the Bierstone algorithm. to be of slight

advantage in the case of small graphs containing a small number of relative­

ly large cliques. The most striking feature, however, appears to be that the

time/clique for version 2 is hardly dependent on the Rize of the ~raph.

The difference between version 1 and "Biers tone" is not so striking and may

be due to the particular ALGOL implementation. It should be borne in mind that

the sets of nodes as they appear in the Bierstone algorithm were coded as one­

word binary vectors, and that a sudden increase in processing time will take

place when the input graph is too large for "one-word representation" of its

subgraphs.

The second testcase was suggested by the referee of C.A.C.M. and consisted of

graphs of dimension 3 x k. These graphs are constructed as the complement

of k disjoint 3-cliques. Such graphs contain 3
k

cliques and are proved by

Moon and Moser [6] to contain the largest number of cliques per node.

Footnote: x) Bierstone's algorithm as reported in [IJ contained an error.

In our implementation the error was corrected. The error was independently

found by Mulligan and Corneil at the University of Toronto, and reported in

a paper submitted to J.A.C.M..

+)For our definition of random graphs see the Appendix.

-8-

III fig. '} II IO!-'.lIritllllli_C' plot of computing time vs. k is preHenll~d. We

sct' that both version I and version 2 perform significantly better than

Bierstone's algorithm. The processing time for version I is proportional

4
k d . 2' . . (4-) k h k. hto ,an for vers~on ~t ~s proport~onal to 3.1 were 3 ~s t e

theoretical limit. Detailed computional results are given in the Appen­

dix. Our results were confirmed by Mulligan [6].
Another aspect to be taken into account when comparing algorithms ~s

their storage requirement. The new algorithms presented in this paper

will need at most !M(M+3) storage locations to contain arrays of (small)

integers where M is the size of largest connected component in the input

graph. In practice this limit will only be approached if the input graph

is an almost complete graph. The Bierstone algorithm requires a rather

unpredictable amount of store, dependent on the number of cliques that

will be generated. This number may be quite large, even for moderate

dimensions, as the Moon-Moser graphs show.

Finally it should be pointed out that Bierstone's algorithm does not

report isolated points as cliques, whereas the new algorithm does. Either

algorithm can, however, be modified to produce results equivalent to the

other. Suppression of I-cliques in the new algorithm is the simplest

adapt ion.

-9-

Random graphs. Computing time per clique (in ms) versus dimension of the

graph. In brackets: total number af cliques in the test sample.

fig. I

o = Bierstone

• = Version

160

+ Version 2

no data
ava'lable

140

no data
available

20

(50) (127) (330) (579) (2163) (3784) (8816) (43223) (12856)

oL- .L.- ..L- -LJ... --l.. -L ~----~~I---
10 15 20 25 30 35 40 45 50

-JU-

I)'.• ')

o = Bicrstone

•
+

verSlon l, slope

version 2, slope

.607

.497

(IOlog 4

(lOlog 3

.602)

.477)

o

o

2 3 4 5 6 7

is

6

I" i)', . .\. '1'111' l' r I 1'1' I II r 11.

L '" eOlllplitational time per clique.

" ...I
I

I "I
I "

I , version 1.
I

I
I

I
I
I
I

I
r---J

I,
I

I,
I

I
I

I
I

I
I

I
, version 2.,

I

-] J-

p = .9

JO 40
---.........~ '"

t

f
5

/r _------- -- version
/

/
,/,,.----.;,'

_........ version 2

~~~
~

p .5

t

1

.20
---........ 1\

5
version 2- --__ ----- ,'" ------ -t version

", ...
... .--_--~ -II'

p .1

10 %0 40
----I.... Il\



-12-

4. Acknowledgements.

The authors are indebted to Miss Annelies Ummels for her excellent typing

of the manuscript.

5. References:

vJ Augustson,J.G., and Minker, J., An analysis of some graphtheoretical

cluster techniques, Journal A.C.M. !I (1970), 571-588.

~] Bierstone, E., Unpublished report, Univ. of Toronto.

QJ Bron, Coen and Kerbosch, Joep, A.G.M., Finding all cliques in an un­

directed Graph, Comm. A~C.M., to appear.

~] Little,John, D.C., et ale An Algorithm for the traveling salesman

problem, J. Opere Res. II (1963),972-989.

~] Moon, J.W. and Moser, L.• Isr. J. of Math., 3 (1965),23-28.

~] Mulligan, Gordon D., Algorithms for finding Cliques of a Graph,

Oct. 1971, Master's Thesis, Department of Computer Science, Univ.

of Toronto.

~J Paeth, G.J.M., Organisaties en effektiviteit, June 1970, Master's

Thesis, Department of Industrial Engineering, Univ. of Technology,

Eindhoven.

~] Schaay, J.A.L., Organisatie, formeel en feitelijk, Doctor's Thesis,

1969, Department of Social Sciences, Univ. of Utrecht, page 123-125.



-13-

6. Appendix.

6.1. Ra~dom Graphs.

In order to generate a random graph of dimension n and percentage of edges

p, we associate with each pair of numbers {i,j} , 1 < i< j :: n, a

probability p. With this probability, we draw at random whether the edge

(i,j) exists or not.

This implies, the the actual fraction of edges in the graph, p, may be

slightly different from p. Some part of the variance of our results may be

due to this (rather unusual) method of generating random graphs. Yet it

does not disturb our conclusions. (SeeMulligan [6J).

6.2. Computational time per clique.

As an extension of figure 1 we present the following tables. The figures

are average of two samples. The variance of thecomputati~nal time per

clique was small. Figure 3 illustrates the effect of p.



-14-


	Voorblad

	Contents

	1  Introduction

	2  Algorithms

	3  Discussion of comperative tests

	4  Acknowledgements

	5  References

	6  Appendix


