513 research outputs found

    On the self-consistent physical parameters of LMC intermediate-age clusters

    Full text link
    The LMC clusters are unique templates of simple stellar population (SSP), being crucial to calibrate models describing the integral light as well as to test the stellar evolution theory. With this in mind we analyzed HST/WFPC2 (V, B--V) colour-magnitude diagrams (CMDs) of 15 populous LMC clusters with ages between ~0.3 Gyr and ~4 Gyr using different stellar evolutionary models (Padova, PEL or Pisa, BaSTI or Teramo). Following the approach described by Kerber, Santiago & Brocato (2007), we determined accurate and self-consistent physical parameters (age, metallicity, distance modulus and reddening) for each cluster by comparing the observed CMDs with synthetic ones. We found significant trends in the physical parameters due to the choice of stellar evolutionary model and treatment of convective core overshooting. In general, models that incorporate overshooting presented more reliable results than those that do not. Comparisons with the results found in the literature demonstrated that our derived metallicities are in good agreement with the ones from the spectroscopy of red giants. We also confirmed that, independent of the adopted stellar evolutionary library, the recovered 3D distribution for these clusters is consistent with a thick disk roughly aligned with the LMC disk as defined by field stars. Finally, we also provide new estimates of distance modulus to the LMC center, that are marginally consistent with the canonical value of 18.50.Comment: 6 pages, 4 figures, conference contribution to IAU Symposium 256, van Loon J.T. & Oliviera J.M., ed

    Mass segregation in rich LMC clusters from modelling of deep HST colour-magnitude diagrams

    Get PDF
    We used the deep colour-magnitude diagrams (CMDs) of five rich LMC clusters (NGC1805, 1818, 1831, 1868, and Hodge14) observed with HST/WFPC2 to derive their present day mass function (PDMF) and its variation with position within the cluster. The PDMF was parameterized as a power law in the available main-sequence mass range of each cluster, typically 0.9 <~ m/M_sun <~ 2.5; its slope was determined at different positions spanning from the very centre out to several core radii. The CMDs in the central regions of the clusters were carefully studied earlier, resulting in accurate age, metallicity, distance modulus, and reddening values. The slope alpha (where Salpeter is 2.35) was determined in annuli by following two distinct methods: 1) a power law fit to the PDMF obtained from the systemic luminosity function (LF); 2) a statistical comparison between observed and model CMDs. In all clusters, significant mass segregation is found from the positional dependence of the PDMF slope: alpha <~ 1.8 for R <= 1.0 R_core and alpha ~ Salpeter inside R=2~3 R_core (except for Hodge 14, where alpha ~ Salpeter for R ~ 4 R_core). The results are robust in the sense that they hold true for both methods used. The CMD method reveals that unresolved binaries flatten the PDMF obtained form the systemic LF, but this effect is smaller than the uncertainties in the alpha determination. For each cluster we estimated dynamical ages inside the core and for the entire system. In both cases we found a trend in the sense that older clusters have flatter PDMF, consistent with a dynamical mass segregation and stellar evaporation

    Self-consistent physical parameters for MC clusters from CMD modelling: application to SMC clusters observed with the SOAR telescope

    Full text link
    The Magellanic Clouds (MCs) present a rich system of stellar clusters that can be used to probe the dynamical and chemical evolution of these neighboring and interacting irregular galaxies. In particular, these stellar clusters (SCs) present combinations of age and metallicity that are not found for this class of objects in the Milky Way, being therefore very useful templates to test and to calibrate integrated light simple stellar population (SSP) models applied to unresolved distance galaxies. On its turn, the age and metallicity for a cluster can be determined spatially resolving its stars, by means of analysis of its colour-magnitude diagrams (CMDs). In this work we present our method to determine self-consistent physical parameters (age, metallicity, distance modulus and reddening) for a stellar cluster, from CMDs modelling of relatively unstudied SCs in the Small Magellanic Cloud (SMC) imaged in the BVI filters with the 4.1 m SOAR telescope. Our preliminary results confirm our expectations that come from a previous integrated spectra and colour analysis: at least one of them (Lindsay 2) is an intermediate-age stellar cluster with ~ 2.6 Gyr and [Fe/H] ~ -1.3, being therefore a new interesting witness regarding the reactivation of the star formation in the MCs in the last 4 Gyr.Comment: 4 pages, 2 figures. To be published in the proceedings of IAUS256: The Magellanic System: Stars, Gas, and Galaxie

    Probing the LMC age gap at intermediate cluster masses

    Full text link
    The LMC has a rich star cluster system spanning a wide range of ages and masses. One striking feature of the LMC cluster system is the existence of an age gap between 3-10 Gyrs. But this feature is not as clearly seen among field stars. Three LMC fields containing relatively poor and sparse clusters whose integrated colours are consistent with those of intermediate age simple stellar populations have been imaged in BVI with the Optical Imager (SOI) at the Southern Telescope for Astrophysical Research (SOAR). A total of 6 clusters, 5 of them with estimated initial masses M < 10^4M_sun, were studied in these fields. Photometry was performed and Colour-Magnitude Diagrams (CMD) were built using standard point spread function fitting methods. The faintest stars measured reach V ~ 23. The CMD was cleaned from field contamination by making use of the three-dimensional colour and magnitude space available in order to select stars in excess relative to the field. A statistical CMD comparison method was developed for this purpose. The subtraction method has proven to be successful, yielding cleaned CMDs consistent with a simple stellar population. The intermediate age candidates were found to be the oldest in our sample, with ages between 1-2 Gyrs. The remaining clusters found in the SOAR/SOI have ages ranging from 100 to 200 Myrs. Our analysis has conclusively shown that none of the relatively low-mass clusters studied by us belongs to the LMC age-gap.Comment: 9 pages, 8 figures. Accepted to MNRA

    A dense disk of dust around the born-again Sakurai's object

    Get PDF
    In 1996, Sakurai's object (V4334 Sgr) suddenly brightened in the centre of a faint Planetary Nebula (PN). This very rare event was interpreted as the reignition of a hot white dwarf that caused a rapid evolution back to the cool giant phase. From 1998 on, a copious amount of dust has formed continuously, screening out the star which has remained embedded in this expanding high optical depth envelope. The new observations, reported here, are used to study the morphology of the circumstellar dust in order to investigate the hypothesis that Sakurai's Object is surrounded by a thick spherical envelope of dust. We have obtained unprecedented, high-angular resolution spectro-interferometric observations, taken with the mid-IR interferometer MIDI/VLTI, which resolve the dust envelope of Sakurai's object. We report the discovery of a unexpectedly compact (30 x 40 milliarcsec, 105 x 140 AU assuming a distance of 3.5 kpc), highly inclined, dust disk. We used Monte Carlo radiative-transfer simulations of a stratified disk to constrain its geometric and physical parameters, although such a model is only a rough approximation of the rapidly evolving dust structure. Even though the fits are not fully satisfactory, some useful and robust constraints can be inferred. The disk inclination is estimated to be 75+/-3 degree with a large scale height of 47+/-7 AU. The dust mass of the disk is estimated to be 6 10^{-5} solar mass. The major axis of the disk (132+/-3 degree) is aligned with an asymmetry seen in the old PN that was re-investigated as part of this study. This implies that the mechanism responsible for shaping the dust envelope surrounding Sakurai's object was already at work when the old PN formed.Comment: A&A Letter, accepte

    Reading the orbital angular momentum of light using plasmonic nanoantennas

    Get PDF
    Orbital angular momentum of light has recently been recognized as a new degree of freedom to encode information in quantum communication using light pulses. Methods to extract this information include reversing the process by which such twisted light was created in the first place or interference with other beams. Here we propose an alternative new way to directly read out the extra information encoded in twisted light using plasmonic nanoantennas by converting the information about the orbital angular momentum of light into spectral information using bright and dark modes. Exemplarily considering rotation-symmetric nanorod nanoantennas, we show that their scattering cross section is sensitive to the value of the orbital angular momentum combined with the polarization of an incident twisted light beam. Explaining the twist dependence of the excited modes with a new analytical model, our results pave the way to twisted light nanoplasmonics, which is of central importance for future on-chip communication using orbital angular momentum of light

    V605 Aql: The Older Twin of Sakurai's Object

    Get PDF
    New optical spectra have been obtained with VLT/FORS2 of the final helium shell flash (FF) star, V605 Aql, which peaked in brightness in 1919. New models suggest that this star is experiencing a very late thermal pulse. The evolution to a cool luminous giant and then back to a compact hot star takes place in only a few years. V605 Aql, the central star of the Planetary Nebula (PN), A58, has evolved from Teff_{eff}\sim5000 K in 1921 to \sim95,000 K today. There are indications that the new FF star, Sakurai's Object (V4334 Sgr), which appeared in 1996, is evolving along a similar path. The abundances of Sakurai's Object today and V605 Aql 80 years ago mimic the hydrogen deficient R Coronae Borealis (RCB) stars with 98% He and 1% C. The new spectra show that V605 Aql has stellar abundances similar to those seen in Wolf-Rayet [WC] central stars of PNe with ~55% He, and ~40% C. The stellar spectrum of V605 Aql can be seen even though the star is not directly detected. Therefore, we may be seeing the spectrum in light scattered around the edge of a thick torus of dust seen edge-on. In the present state of evolution of V605 Aql, we may be seeing the not too distant future of Sakurai's Object.Comment: 12 pages, 1 figure, ApJ Letters in pres

    Analysis of colour-magnitude diagrams of rich LMC clusters: NGC 1831

    Get PDF
    We present the analysis of a deep colour-magnitude diagram (CMD) of NGC 1831, a rich star cluster in the LMC. The data were obtained with HST/WFPC2 in the F555W (~V) and F814W (~I) filters, reaching m_555 ~ 25. We discuss and apply a method of correcting the CMD for sampling incompleteness and field star contamination. Efficient use of the CMD data was made by means of direct comparisons of the observed to model CMDs. The model CMDs are built by an algorithm that generates artificial stars from a single stellar population, characterized by an age, a metallicity, a distance, a reddening value, a present day mass function and a fraction of unresolved binaries. Photometric uncertainties are empirically determined from the data and incorporated into the models as well. Statistical techniques are presented and applied as an objective method to assess the compatibility between the model and data CMDs. By modelling the CMD of the central region in NGC 1831 we infer a metallicity Z = 0.012, 8.75 < log(tau) < 8.80, 18.54 < (m-M)_0 < 18.68 and 0.00 < E(B-V) < 0.03. For the position dependent PDMF slope (alpha = -dlog(Phi(M))/dlog(M)), we clearly observe the effect of mass segregation in the system: for projected distances R < 30 arcsec, alpha ~ 1.7, whereas 2.2 < alpha < 2.5 in the outer regions of NGC 1831.Comment: 12 pages, 14 figure

    Successful application of PSF-R techniques to the case of the globular cluster NGC 6121 (M 4)

    Get PDF
    Context. Precise photometric and astrometric measurements on astronomical images require an accurate knowledge of the point spread function (PSF). When the PSF cannot be modelled directly from the image, PSF-reconstruction techniques become the only viable solution. So far, however, their performance on real observations has rarely been quantified. Aims. In this Letter, we test the performance of a novel hybrid technique, called PRIME, on Adaptive Optics-assisted SPHERE/ZIMPOL observations of the Galactic globular cluster NGC 6121. Methods. PRIME couples PSF-reconstruction techniques, based on control-loop data and direct image fitting performed on the only bright point-like source available in the field of view of the ZIMPOL exposures, with the aim of building the PSF model. Results. By exploiting this model, the magnitudes and positions of the stars in the field can be measured with an unprecedented precision, which surpasses that obtained by more standard methods by at least a factor of four for on-axis stars and by up to a factor of two on fainter, off-axis stars. Conclusions. Our results demonstrate the power of PRIME in recovering precise magnitudes and positions when the information directly coming from astronomical images is limited to only a few point-like sources and, thus, paving the way for a proper analysis of future Extremely Large Telescope observations of sparse stellar fields or individual extragalactic objects

    A low-absorption disk zone at low Galactic latitude in Centaurus

    Get PDF
    We investigate the properties of two stellar concentrations in a low-absorption disk zone in Centaurus, located respectively at =306.47\ell=306.47^{\circ}, b=0.61b=-0.61 ^{\circ}, and =307.01\ell=307.01^{\circ}, b=0.74b=-0.74 ^{\circ}. The present analysis is based mostly on 2MASS photometry, as well as optical photometry. Based on colour-magnitude diagrams and stellar radial density profiles, we show that these concentrations are not open star clusters. Instead, they appear to be field stars seen through a differentially-reddened window. We estimate that the bulk of the stars in both stellar concentrations is located at 1.5\sim1.5 kpc from the Sun, a distance consistent with that of the Sgr-Car arm in that direction. This low-absorption window allows one to probe into distant parts of the disk besides the Sgr-Car arm, probably the tangent part of the Sct-Cru arm, and/or the far side of the Sgr-Car arm in that direction. The main sequence associated to the Sgr-Car arm is reddened by \ebv\sim0.5, so that this window through the disk is comparable in reddening to Baade's window to the bulge. We also investigate the nature of the open cluster candidate Ru 166. The presently available data do not allow us to conclude whether Ru 166 is an actual open cluster or field stars seen through a small-scale low-absorption window
    corecore