research

Self-consistent physical parameters for MC clusters from CMD modelling: application to SMC clusters observed with the SOAR telescope

Abstract

The Magellanic Clouds (MCs) present a rich system of stellar clusters that can be used to probe the dynamical and chemical evolution of these neighboring and interacting irregular galaxies. In particular, these stellar clusters (SCs) present combinations of age and metallicity that are not found for this class of objects in the Milky Way, being therefore very useful templates to test and to calibrate integrated light simple stellar population (SSP) models applied to unresolved distance galaxies. On its turn, the age and metallicity for a cluster can be determined spatially resolving its stars, by means of analysis of its colour-magnitude diagrams (CMDs). In this work we present our method to determine self-consistent physical parameters (age, metallicity, distance modulus and reddening) for a stellar cluster, from CMDs modelling of relatively unstudied SCs in the Small Magellanic Cloud (SMC) imaged in the BVI filters with the 4.1 m SOAR telescope. Our preliminary results confirm our expectations that come from a previous integrated spectra and colour analysis: at least one of them (Lindsay 2) is an intermediate-age stellar cluster with ~ 2.6 Gyr and [Fe/H] ~ -1.3, being therefore a new interesting witness regarding the reactivation of the star formation in the MCs in the last 4 Gyr.Comment: 4 pages, 2 figures. To be published in the proceedings of IAUS256: The Magellanic System: Stars, Gas, and Galaxie

    Similar works

    Full text

    thumbnail-image

    Available Versions