8 research outputs found

    Lysimeter-based full fertilizer 15N balances corroborate direct dinitrogen emission measurements using the 15N gas flow method

    Get PDF
    The 15^{15}N gas flux (15^{15}NGF) method allows for direct in situ quantification of dinitrogen (N2_2) emissions from soils, but a successful cross-comparison with another method is missing. The objectives of this study were to quantify N2_2 emissions of a wheat rotation using the 15^{15}NGF method, to compare these N2_2 emissions with those obtained from a lysimeter-based 15^{15}N fertilizer mass balance approach, and to contextualize N2_2 emissions with 15^{15}N enrichment of N2_2 in soil air. For four sampling periods, fertilizer-derived N2_2 losses (15^{15}NGF method) were similar to unaccounted fertilizer N fates as obtained from the 15^{15}N mass balance approach. Total N2_2 emissions (15^{15}NGF method) amounted to 21โ€‰ยฑโ€‰3 kg N haโˆ’โ€‰1, with 13โ€‰ยฑโ€‰2 kg N haโˆ’โ€‰1 (7.5% of applied fertilizer N) originating from fertilizer. In comparison, the 15^{15}N mass balance approach overall indicated fertilizer-derived N2_2 emissions of 11%, equivalent to 18โ€‰ยฑโ€‰13 kg N haโˆ’โ€‰1. Nitrous oxide (N2_2O) emissions were small (0.15โ€‰ยฑโ€‰0.01 kg N haโˆ’โ€‰1 or 0.1% of fertilizer N), resulting in a large mean N2_2:(N2_2Oโ€‰+โ€‰N2_2) ratio of 0.94โ€‰ยฑโ€‰0.06. Due to the applied drip fertigation, ammonia emissions accounted for <โ€‰1% of fertilizer-N, while N leaching was negligible. The temporal variability of N2_2 emissions was well explained by the ฮด15^{15}N2_2 in soil air down to 50 cm depth. We conclude the 15^{15}NGF method provides realistic estimates of field N2_2 emissions and should be more widely used to better understand soil N2_2 losses. Moreover, combining soil air ฮด15^{15}N2_2 measurements with diffusion modeling might be an alternative approach for constraining soil N2_2 emissions

    Fine-Tuning Cardiac Insulin-Like Growth Factor 1 Receptor Signaling to Promote Health and Longevity

    Get PDF
    Background: The insulin-like growth factor 1 (IGF1) pathway is a key regulator of cellular metabolism and aging. Although its inhibition promotes longevity across species, the effect of attenuated IGF1 signaling on cardiac aging remains controversial. Methods: We performed a lifelong study to assess cardiac health and lifespan in 2 cardiomyocyte-specific transgenic mouse models with enhanced versus reduced IGF1 receptor (IGF1R) signaling. Male mice with human IGF1R overexpression or dominant negative phosphoinositide 3-kinase mutation were examined at different life stages by echocardiography, invasive hemodynamics, and treadmill coupled to indirect calorimetry. In vitro assays included cardiac histology, mitochondrial respiration, ATP synthesis, autophagic flux, and targeted metabolome profiling, and immunoblots of key IGF1R downstream targets in mouse and human explanted failing and nonfailing hearts, as well. Results: Young mice with increased IGF1R signaling exhibited superior cardiac function that progressively declined with aging in an accelerated fashion compared with wild-type animals, resulting in heart failure and a reduced lifespan. In contrast, mice with low cardiac IGF1R signaling exhibited inferior cardiac function early in life, but superior cardiac performance during aging, and increased maximum lifespan, as well. Mechanistically, the late-life detrimental effects of IGF1R activation correlated with suppressed autophagic flux and impaired oxidative phosphorylation in the heart. Low IGF1R activity consistently improved myocardial bioenergetics and function of the aging heart in an autophagy-dependent manner. In humans, failing hearts, but not those with compensated hypertrophy, displayed exaggerated IGF1R expression and signaling activity. Conclusions: Our findings indicate that the relationship between IGF1R signaling and cardiac health is not linear, but rather biphasic. Hence, pharmacological inhibitors of the IGF1 pathway, albeit unsuitable for young individuals, might be worth considering in older adults

    Intratumor heterogeneity and cell secretome promote chemotherapy resistance and progression of colorectal cancer

    No full text
    Abstract The major underlying cause for the high mortality rate in colorectal cancer (CRC) relies on its drug resistance, to which intratumor heterogeneity (ITH) contributes substantially. CRC tumors have been reported to comprise heterogeneous populations of cancer cells that can be grouped into 4 consensus molecular subtypes (CMS). However, the impact of inter-cellular interaction between these cellular states on the emergence of drug resistance and CRC progression remains elusive. Here, we explored the interaction between cell lines belonging to the CMS1 (HCT116 and LoVo) and the CMS4 (SW620 and MDST8) in a 3D coculture model, mimicking the ITH of CRC. The spatial distribution of each cell population showed that CMS1 cells had a preference to grow in the center of cocultured spheroids, while CMS4 cells localized at the periphery, in line with observations in tumors from CRC patients. Cocultures of CMS1 and CMS4 cells did not alter cell growth, but significantly sustained the survival of both CMS1 and CMS4 cells in response to the front-line chemotherapeutic agent 5-fluorouracil (5-FU). Mechanistically, the secretome of CMS1 cells exhibited a remarkable protective effect for CMS4 cells against 5-FU treatment, while promoting cellular invasion. Secreted metabolites may be responsible for these effects, as demonstrated by the existence of 5-FU induced metabolomic shifts, as well as by the experimental transfer of the metabolome between CMS1 and CMS4 cells. Overall, our results suggest that the interplay between CMS1 and CMS4 cells stimulates CRC progression and reduces the efficacy of chemotherapy

    Alzheimerโ€™s disease (AD) therapeutics โ€“ 1: Repeated clinical failures continue to question the amyloid hypothesis of AD and the current understanding of AD causality

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore