1,609 research outputs found

    Unified line profiles for hydrogen perturbed by collisions with protons: satellites and asymmetries

    Get PDF
    We present new calculations of unified line profiles for hydrogen perturbed by collisions with protons. We report on new calculations of the potential energies and dipole moments which allow the evaluation of profiles for the lines of the Lyman series up to Lymanδ\delta and the Balmer series up to Balmer10. Unified calculations only existed for the lines Lymanα\alpha to Lymanγ\gamma and Balmerα\alpha including the H2+_2^+ quasi-molecule. These data are available as online material accompanying this paper and should be included in atmosphere models, in place of the Stark effect of protons, since the quasi-molecular contributions cause not only satellites, but large asymmetries that are unaccounted for in models that assume Stark broadening of electrons and protons are equal.Comment: 13 pages, 25 figures. Accepted for publication in MNRA

    Interdisciplinary collaboration in graphic design

    Get PDF
    Not Include

    The rate of cooling of the pulsating white dwarf star G117-B15A: a new asteroseismological inference of the axion mass

    Get PDF
    We employ a state-of-the-art asteroseismological model of G117-B15A, the archetype of the H-rich atmosphere (DA) white dwarf pulsators (also known as DAV or ZZ Ceti variables), and use the most recently measured value of the rate of period change for the dominant mode of this pulsating star to derive a new constraint on the mass of axion, the still conjectural non-barionic particle considered as candidate for dark matter of the Universe. Assuming that G117-B15A is truly represented by our asteroseismological model, and in particular, that the period of the dominant mode is associated to a pulsation g-mode trapped in the H envelope, we find strong indications of the existence of extra cooling in this star, compatible with emission of axions of mass m_a \cos^2 \beta = 17.4^{+2.3}_{-2.7} meV.Comment: 9 pages, 5 figures and 3 tables. Accepted for publication in MNRA

    Driving in ZZ Ceti stars - Problem solved?

    Full text link
    There is a fairly tight correlation between the pulsation periods and effective temperatures of ZZ Ceti stars (cooler stars have longer periods). This seems to fit the theoretical picture, where driving occurs in the partial ionization zone, which lies deeper and deeper within the star as it cools. It is reasonable to assume that the pulsation periods should be related to the thermal timescale in the region where driving occurs. As that region sinks further down below the surface, that thermal timescale increases. Assuming this connection, the pulsation periods could provide an additional way to determine effective temperatures, independent of spectroscopy. We explore this idea and find that in practice, things are not so simple.Comment: 4 pages, 3 figure

    Gemini spectra of 12000K white dwarf stars

    Get PDF
    We report signal-to-noise ratio SNR ~ 100 optical spectra for four DA white dwarf stars acquired with the GMOS spectrograph of the 8m Gemini north telescope. These stars have 18<g<19 and are around Teff ~ 12000 K, were the hydrogen lines are close to maximum. Our purpose is to test if the effective temperatures and surface gravities derived from the relatively low signal-to-noise ratio ( ~ 21) optical spectra acquired by the Sloan Digital Sky Survey through model atmosphere fitting are trustworthy. Our spectra range from 3800A to 6000A, therefore including H beta to H9. The H8 line was only marginally present in the SDSS spectra, but is crucial to determine the gravity. When we compare the values published by Kleinman et al. (2004) and Eisenstein et al. (2006) with our line-profile (LPT) fits, the average differences are: Delta Teff ~ 320 K, systematically lower in SDSS, and Delta log g ~ 0.24 dex, systematically larger in SDSS. The correlation between gravity and effective temperature can only be broken at wavelengths bluer than 3800 A. The uncertainties in Teff are 60% larger, and in log g larger by a factor of 4, than the Kleinman et al. (2004) and Eisenstein et al. (2006) internal uncertainties.Comment: 11 pages and 8 figure

    Revealing the pulsational properties of the V777 Her star KUV 05134+2605 by its long-term monitoring

    Get PDF
    Context: KUV 05134+2605 is one of the 21 pulsating DB white dwarfs (V777 Her or DBV variables) known so far. The detailed investigation of the short-period and low-amplitude pulsations of these relatively faint targets requires considerable observational efforts from the ground, long-term single-site or multisite observations. The observed amplitudes of excited modes undergo short-term variations in many cases, which makes the determination of pulsation modes difficult. Methods: We re-analysed the data already published, and collected new measurements. We compared the frequency content of the different datasets from the different epochs and performed various tests to check the reliability of the frequency determinations. The mean period spacings were investigated with linear fits to the observed periods, Kolmogorov-Smirnov and Inverse Variance significance tests, and Fourier analysis of different period sets, including a Monte Carlo test simulating the effect of alias ambiguities. We employed fully evolutionary DB white dwarf models for the asteroseismic investigations. Results: We identified 22 frequencies between 1280 and 2530 microHz. These form 12 groups, which suggests at least 12 possible frequencies for the asteroseismic investigations. Thanks to the extended observations, KUV 05134+2605 joined the group of rich white dwarf pulsators. We identified one triplet and at least one doublet with a ~9 microHz frequency separation, from which we derived a stellar rotation period of 0.6 d. We determined the mean period spacings of ~31 and ~18 s for the modes we propose as dipole and quadrupole, respectively. We found an excellent agreement between the stellar mass derived from the l=1 period spacing and the period-to-period fits, all providing M_* = 0.84-0.85 M_Sun solutions. Our study suggests that KUV 05134+2605 is the most massive amongst the known V777 Her stars.Comment: 15 pages, 11 figures, accepted for publication in Astronomy & Astrophysic

    White Dwarfs In Ngc6397 And M4: Constraints On The Physics Of Crystallization

    Get PDF
    We explore the physics of crystallization in the dense Coulomb plasma of the deep interiors of white dwarf stars using the color-magnitude diagram and luminosity function constructed from Hubble Space Telescope photometry of the globular cluster M 4 and compare it with our results for proper motion cleaned Hubble Space Telescope photometry of the globular cluster NGC 6397. We demonstrate that the data are consistent with a binary mixture of carbon and oxygen crystallizing at a value of Gamma higher than the theoretical value for a One Component Plasma (OCP). We show that this result is in line with the latest Molecular Dynamics simulations for binary mixtures of C/O. We discuss implications for future work.Astronom

    A puzzling periodicity in the pulsating DA white dwarf G 117-B15A

    Get PDF
    We present time-resolved optical spectrophotometry of the pulsating hydrogen atmosphere (DA) white dwarf G 117-B15A. We find three periodicities in the pulsation spectrum (215s, 272s, and 304s) all of which have been found in earlier studies. By comparing the fractional wavelength dependence of the pulsation amplitudes (chromatic amplitudes) with models, we confirm a previous report that the strongest mode, at 215s, has l=1. The chromatic amplitude for the 272s mode is very puzzling, showing an increase in fractional amplitude with wavelength that cannot be reproduced by the models for any l at optical wavelengths. Based on archival HST data, we show that while the behaviour of the 215s mode at ultra-violet wavelengths is as expected from models, the weird behaviour of the 272s periodicity is not restricted to optical wavelengths in that it fails to show the expected increase in fractional amplitude towards shorter wavelengths. We discuss possible causes for the discrepancies found for the 272s variation, but find that all are lacking, and conclude that the nature of this periodicity remains unclear.Comment: 9 pages, 9 figures; accepted for publication in A&

    Magnetic frustration in an iron based Cairo pentagonal lattice

    Get PDF
    The Fe3+ lattice in the Bi2Fe4O9 compound is found to materialize the first analogue of a magnetic pentagonal lattice. Due to its odd number of bonds per elemental brick, this lattice, subject to first neighbor antiferromagnetic interactions, is prone to geometric frustration. The Bi2Fe4O9 magnetic properties have been investigated by macroscopic magnetic measurements and neutron diffraction. The observed non-collinear magnetic arrangement is related to the one stabilized on a perfect tiling as obtained from a mean field analysis with direct space magnetic configurations calculations. The peculiarity of this structure arises from the complex connectivity of the pentagonal lattice, a novel feature compared to the well-known case of triangle-based lattices
    corecore