The Fe3+ lattice in the Bi2Fe4O9 compound is found to materialize the first
analogue of a magnetic pentagonal lattice. Due to its odd number of bonds per
elemental brick, this lattice, subject to first neighbor antiferromagnetic
interactions, is prone to geometric frustration. The Bi2Fe4O9 magnetic
properties have been investigated by macroscopic magnetic measurements and
neutron diffraction. The observed non-collinear magnetic arrangement is related
to the one stabilized on a perfect tiling as obtained from a mean field
analysis with direct space magnetic configurations calculations. The
peculiarity of this structure arises from the complex connectivity of the
pentagonal lattice, a novel feature compared to the well-known case of
triangle-based lattices