279 research outputs found

    AART-BC: a sensor system for monitoring Assistive Technology use beyond the clinic

    Get PDF
    A wide range of assistive and rehabilitative technologies (ART) are available to assist with mobility and upper limb function. However, anecdotal evidence suggests many of the devices prescribed, or purchased, are either poorly used, or rejected entirely. This situation is costly, both for the healthcare provider and the user, and may be leading to secondary consequences, such as falls and/or social isolation. This paper reports on the development and initial feasibility testing of a system for monitoring when and how assistive devices are used outside of the clinic setting, and feeding this information to the device user themselves and/or prescribing clinician (where appropriate). Illustrative data from multiple time-synchronized device and body worn sensors are presented on a wheelchair user and a user of a “rollator” walking frame, moving along a walkway. Observation of the sensor data in both cases showed characteristic signatures corresponding to individual “pushes”. In parallel with this work, other project partners are exploring clinician and patient data requirements, as well we sensor set acceptability The initial results highlight the potential for the approach and demonstrate the need for further work to reduce and optimize the sensor set

    Characterisation of rollator use using inertial sensors

    Get PDF
    The use of walking aids is prevalent among older people and people with mobility impairment. Rollators are designed to support outdoor mobility and require the user to negotiate curbs and slopes in the urban environment. Despite the prevalence of rollators, analysis of their use outside of controlled environments has received relatively little attention. This paper reports on an initial study to characterise rollator movement. An inertial measurement unit (IMU) was used to measure the motion of the rollator and analytical approaches were developed to extract features characterising the rollator movement, properties of the surface, and push events. The analytics were tested in two situations, firstly a healthy participant used a rollator in a laboratory using a motion capture system to obtain ground truth. Secondly the IMU was used to measure the movement of a rollator being used by a user with multiple sclerosis (MS) on a flat surface, cross-slope, up and down slopes, and up and down a step. The results showed that surface inclination and distance travelled measured by the IMU have close approximation to the results from ground truth, therefore demonstrating the potential for IMU-derived metrics to characterise rollator movement and user’s pushing style in the outdoor environment

    Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.

    Get PDF
    The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    A Typology of Digital Sharing Business Models: A Design Science Research Approach

    Full text link
    The digitally enabled sharing economy, also called the “digital sharing economy” (DSE), has changed patterns of consumption by introducing new choices and channels for provision and receipt of services. The DSE encompasses sharing systems whose business models may vary distinctly from platform to platform. Although business models in the context of the sharing economy have been studied so far, we have observed that the current literature does not provide an approach that covers all the possible business models (in the broadest sense of the term) that (potentially) exist within the scope of the DSE. The present paper, therefore, aims to propose a typology of business models in the DSE that covers a wide space of models – even those which may not involve “business” in the commercial sense. This is achieved through an iterative inductive process based on a design science research approach. The typology can assist in positioning the current and future sharing systems in the DSE by systematically classifying their business models. It is intended to serve as a guiding tool for the sustainability assessment of platforms from both resource and socio-economic perspectives. The present study can also enable researchers and practitioners to capture and systematically analyse digital sharing business models based on a structured, actionable approach

    Genetic variation in the pleiotropic association between physical activity and body weight in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A sedentary lifestyle is often assumed to lead to increases in body weight and potentially obesity and related diseases but in fact little is known about the genetic association between physical activity and body weight. We tested for such an association between body weight and the distance, duration, and speed voluntarily run by 310 mice from the F<sub>2 </sub>generation produced from an intercross of two inbred lines that differed dramatically in their physical activity levels.</p> <p>Methods</p> <p>We used a conventional interval mapping approach with SNP markers to search for QTLs that affected both body weight and activity traits. We also conducted a genome scan to search for relationship QTLs (<it>rel</it>QTLs), or chromosomal regions that affected an activity trait variably depending on the phenotypic value of body weight.</p> <p>Results</p> <p>We uncovered seven quantitative trait loci (QTLs) affecting body weight, but only one co-localized with another QTL previously found for activity traits. We discovered 19 <it>rel</it>QTLs that provided evidence for a genetic (pleiotropic) association of physical activity and body weight. The three genotypes at each of these loci typically exhibited a combination of negative, zero, and positive regressions of the activity traits on body weight, the net effect of which was to produce overall independence of body weight from physical activity. We also demonstrated that the <it>rel</it>QTLs produced these varying associations through differential epistatic interactions with a number of other epistatic QTLs throughout the genome.</p> <p>Conclusion</p> <p>It was concluded that individuals with specific combinations of genotypes at the <it>rel</it>QTLs and <it>epi</it>QTLs might account for some of the variation typically seen in plots of the association of physical activity with body weight.</p

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore