832 research outputs found
Adaptive Prediction Error Coding in the Human Midbrain and Striatum Facilitates Behavioral Adaptation and Learning Efficiency.
Effective error-driven learning benefits from scaling of prediction errors to reward variability. Such behavioral adaptation may be facilitated by neurons coding prediction errors relative to the standard deviation (SD) of reward distributions. To investigate this hypothesis, we required participants to predict the magnitude of upcoming reward drawn from distributions with different SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. In line with the notion of adaptive coding, BOLD response slopes in the Substantia Nigra/Ventral Tegmental Area (SN/VTA) and ventral striatum were steeper for prediction errors occurring in distributions with smaller SDs. SN/VTA adaptation was not instantaneous but developed across trials. Adaptive prediction error coding was paralleled by behavioral adaptation, as reflected by SD-dependent changes in learning rate. Crucially, increased SN/VTA and ventral striatal adaptation was related to improved task performance. These results suggest that adaptive coding facilitates behavioral adaptation and supports efficient learning.This study was supported by the Wellcome Trust (W.S., P.C.F.), Bernard Wolfe Health Neuroscience Fund (P.C.F.) and the Niels Stensen Foundation (K.M.J.D.). We thank William Stauffer, Armin Lak and Joost Haarsma for useful discussions.This is the final version of the article. It first appeared from Cell Press via http://dx.doi.org/10.1016/j.neuron.2016.04.01
Experimental analysis of the effect of taxes and subsides on calories purchased in an on-line supermarket
Taxes and subsidies are a public health approach to improving nutrient quality of food purchases. While taxes or subsidies influence purchasing, it is unclear whether they influence total energy or overall diet quality of foods purchased. Using a within subjects design, selected low nutrient dense foods (e.g. sweetened beverages, candy, salty snacks) were taxed, and fruits and vegetables and bottled water were subsidized by 12.5% or 25% in comparison to a usual price condition for 199 female shoppers in an experimental store. Results showed taxes reduced calories purchased of taxed foods (coefficient = -6.61, Cl = -11.94 to -1.28) and subsidies increased calories purchased of subsidized foods (coefficient = 13.74, Cl = 8.51 to 18.97). However, no overall effect was observed on total calories purchased. Both taxes and subsidies were associated with a reduction in calories purchased for grains (taxes: coefficient = -6.58, Cl = -11.91 to -1.24, subsidies: coefficient = -12.86, Cl = -18.08 to -7.63) and subsidies were associated with a reduction in calories purchased for miscellaneous foods (coefficient = -7.40, CI = -12.62 to -2.17) (mostly fats, oils and sugars). Subsidies improved the nutrient quality of foods purchased (coefficient = 0.14, Cl = 0.07 to 0.21). These results suggest that taxes and subsidies can influence energy purchased for products taxed or subsidized, but not total energy purchased. However, the improvement in nutrient quality with subsidies indicates that pricing can shift nutritional quality of foods purchased. Research is needed to evaluate if differential pricing strategies based on nutrient quality are associated with reduction in calories and improvement in nutrient quality of foods purchased
Impact of Scottish vocational qualifications on residential child care : have they fulfilled the promise?
This article will present findings from a doctoral study exploring the impact of 'SVQ Care: Promoting Independence (level III)' within children's homes. The study focuses on the extent to which SVQs enhance practice and their function within a 'learning society'. A total of 30 staff were selected from seven children's homes in two different local authority social work departments in Scotland. Each member of staff was interviewed on four separate occasions over a period of 9 months. Interviews were structured using a combination of repertory grids and questions. Particular focus was given to the assessment process, the extent to which SVQs enhance practice and the learning experiences of staff. The findings suggest that there are considerable deficiencies both in terms of the SVQ format and the way in which children's homes are structured for the assessment of competence. Rather than address the history of failure within residential care, it appears that SVQs have enabled the status quo to be maintained whilst creating an 'illusion' of change within a learning society
Half-Earth or Whole Earth? Radical ideas for conservation, and their implications
AbstractWe question whether the increasingly popular, radical idea of turning half the Earth into a network of protected areas is either feasible or just. We argue that this Half-Earth plan would have widespread negative consequences for human populations and would not meet its conservation objectives. It offers no agenda for managing biodiversity within a human half of Earth. We call instead for alternative radical action that is both more effective and more equitable, focused directly on the main drivers of biodiversity loss by shifting the global economy from its current foundation in growth while simultaneously redressing inequality.</jats:p
Comparison of the within-reader and inter-vendor agreement of left ventricular circumferential strains and volume indices derived from cardiovascular magnetic resonance imaging
PurposeVolume indices and left ventricular ejection fraction (LVEF) are routinely used to assess cardiac function. Ventricular strain values may provide additional diagnostic information, but their reproducibility is unclear. This study therefore compares the repeatability and reproducibility of volumes, volume fraction, and regional ventricular strains, derived from cardiovascular magnetic resonance (CMR) imaging, across three software packages and between readers.MethodsSeven readers analysed 16 short-axis CMR stacks of a porcine heart. Endocardial contours were manually drawn using OsiriX and Simpleware ScanIP and repeated in both softwares. The images were also contoured automatically in Circle CVI42. Endocardial global, apical, mid-ventricular, and basal circumferential strains, as well as end-diastolic and end-systolic volume and LVEF were compared.ResultsBland-Altman analysis found systematic biases in contour length between software packages. Compared to OsiriX, contour lengths were shorter in both ScanIP (-1.9 cm) and CVI42 (-0.6 cm), causing statistically significant differences in end-diastolic and end-systolic volumes, and apical circumferential strain (all pConclusionOsiriX and CVI42 gave consistent results for all strain and volume metrics, with no statistical differences found between OsiriX and ScanIP for mid-ventricular, global or basal strains, or left ventricular ejection fraction. However, volumes were influenced by the choice of contouring software, suggesting care should be taken when comparing volumes across different software
Emergent dynamic chirality in a thermally driven artificial spin ratchet
Modern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice1, 2 can lead to specific collective behaviour3, including emergent magnetic monopoles4, 5, charge screening6, 7 and transport8, 9, as well as magnonic response10, 11, 12. Here, we demonstrate a spin-ice-based active material in which energy is converted into unidirectional dynamics. Using X-ray photoemission electron microscopy we show that the collective rotation of the average magnetization proceeds in a unique sense during thermal relaxation. Our simulations demonstrate that this emergent chiral behaviour is driven by the topology of the magnetostatic field at the edges of the nanomagnet array, resulting in an asymmetric energy landscape. In addition, a bias field can be used to modify the sense of rotation of the average magnetization. This opens the possibility of implementing a magnetic Brownian ratchet13, 14, which may find applications in novel nanoscale devices, such as magnetic nanomotors, actuators, sensors or memory cells
Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring
Over the last 2 decades, a large number of neurophysiological and neuroimaging studies of patients with schizophrenia have furnished in vivo evidence for dysconnectivity, ie, abnormal functional integration of brain processes. While the evidence for dysconnectivity in schizophrenia is strong, its etiology, pathophysiological mechanisms, and significance for clinical symptoms are unclear. First, dysconnectivity could result from aberrant wiring of connections during development, from aberrant synaptic plasticity, or from both. Second, it is not clear how schizophrenic symptoms can be understood mechanistically as a consequence of dysconnectivity. Third, if dysconnectivity is the primary pathophysiology, and not just an epiphenomenon, then it should provide a mechanistic explanation for known empirical facts about schizophrenia. This article addresses these 3 issues in the framework of the dysconnection hypothesis. This theory postulates that the core pathology in schizophrenia resides in aberrant N-methyl-D-aspartate receptor (NMDAR)–mediated synaptic plasticity due to abnormal regulation of NMDARs by neuromodulatory transmitters like dopamine, serotonin, or acetylcholine. We argue that this neurobiological mechanism can explain failures of self-monitoring, leading to a mechanistic explanation for first-rank symptoms as pathognomonic features of schizophrenia, and may provide a basis for future diagnostic classifications with physiologically defined patient subgroups. Finally, we test the explanatory power of our theory against a list of empirical facts about schizophrenia
- …