214 research outputs found

    Calibrating CHIME, A New Radio Interferometer to Probe Dark Energy

    Full text link
    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a transit interferometer currently being built at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC, Canada. We will use CHIME to map neutral hydrogen in the frequency range 400 -- 800\,MHz over half of the sky, producing a measurement of baryon acoustic oscillations (BAO) at redshifts between 0.8 -- 2.5 to probe dark energy. We have deployed a pathfinder version of CHIME that will yield constraints on the BAO power spectrum and provide a test-bed for our calibration scheme. I will discuss the CHIME calibration requirements and describe instrumentation we are developing to meet these requirements

    Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder

    Full text link
    A pathfinder version of CHIME (the Canadian Hydrogen Intensity Mapping Experiment) is currently being commissioned at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC. The instrument is a hybrid cylindrical interferometer designed to measure the large scale neutral hydrogen power spectrum across the redshift range 0.8 to 2.5. The power spectrum will be used to measure the baryon acoustic oscillation (BAO) scale across this poorly probed redshift range where dark energy becomes a significant contributor to the evolution of the Universe. The instrument revives the cylinder design in radio astronomy with a wide field survey as a primary goal. Modern low-noise amplifiers and digital processing remove the necessity for the analog beamforming that characterized previous designs. The Pathfinder consists of two cylinders 37\,m long by 20\,m wide oriented north-south for a total collecting area of 1,500 square meters. The cylinders are stationary with no moving parts, and form a transit instrument with an instantaneous field of view of \sim100\,degrees by 1-2\,degrees. Each CHIME Pathfinder cylinder has a feedline with 64 dual polarization feeds placed every \sim30\,cm which Nyquist sample the north-south sky over much of the frequency band. The signals from each dual-polarization feed are independently amplified, filtered to 400-800\,MHz, and directly sampled at 800\,MSps using 8 bits. The correlator is an FX design, where the Fourier transform channelization is performed in FPGAs, which are interfaced to a set of GPUs that compute the correlation matrix. The CHIME Pathfinder is a 1/10th scale prototype version of CHIME and is designed to detect the BAO feature and constrain the distance-redshift relation.Comment: 20 pages, 12 figures. submitted to Proc. SPIE, Astronomical Telescopes + Instrumentation (2014

    Fermi Large Area Telescope Observations of Gamma-ray Pulsars PSR J1057-5226, J1709-4429, and J1952+3252

    Get PDF
    The Fermi Large Area Telescope (LAT) data have confirmed the pulsed emission from all six high-confidence gamma-ray pulsars previously known from the EGRET observations. We report results obtained from the analysis of 13 months of LAT data for three of these pulsars (PSR J1057-5226, PSR J1709-4429, and PSR J1952+3252) each of which had some unique feature among the EGRET pulsars. The excellent sensitivity of LAT allows more detailed analysis of the evolution of the pulse profile with energy and also of the variation of the spectral shape with phase. We measure the cutoff energy of the pulsed emission from these pulsars for the first time and provide a more complete picture of the emission mechanism. The results confirm some, but not all, of the features seen in the EGRET data.Comment: Accepted for publication in ApJ. 45 pages, 12 figures, 11 tables. Corresponding authors: O. Celik, F. Gargano, T. Reposeur, D.J. Thompso

    Detection of the energetic pulsar PSR B1509-58 and its pulsar wind nebula in MSH 15-52 using the Fermi-Large Area Telescope

    Full text link
    We report the detection of high energy gamma-ray emission from the young and energetic pulsar PSR B1509-58 and its pulsar wind nebula (PWN) in the composite supernova remnant SNR G320.4-1.2 (aka MSH 15-52). Using 1 year of survey data with the Fermi-Large Area Telescope (LAT), we detected pulsations from PSR B1509-58 up to 1 GeV and extended gamma-ray emission above 1 GeV spatially coincident with the PWN. The pulsar light curve presents two peaks offset from the radio peak by phases 0.96 ±\pm 0.01 and 0.33 ±\pm 0.02. New constraining upper limits on the pulsar emission are derived below 1 GeV and confirm a severe spectral break at a few tens of MeV. The nebular spectrum in the 1 - 100 GeV energy range is well described by a power-law with a spectral index of (1.57 ±\pm 0.17 ±\pm 0.13) and a flux above 1 GeV of (2.91 ±\pm 0.79 ±\pm 1.35) 10^{-9} cm^{-2} s^{-1}. The first errors represent the statistical errors on the fit parameters, while the second ones are the systematic uncertainties. The LAT spectrum of the nebula connects nicely with Cherenkov observations, and indicates a spectral break between GeV and TeV energies.Comment: 14 pages, 6 figures, accepted for publication by Ap

    Fermi-LAT Search for Pulsar Wind Nebulae around gamma-ray Pulsars

    Full text link
    The high sensitivity of the Fermi-LAT (Large Area Telescope) offers the first opportunity to study faint and extended GeV sources such as pulsar wind nebulae (PWNe). After one year of observation the LAT detected and identified three pulsar wind nebulae: the Crab Nebula, Vela-X and the PWN inside MSH 15-52. In the meantime, the list of LAT detected pulsars increased steadily. These pulsars are characterized by high energy loss rates from ~3 \times 10^{33} erg s1^{-1} to 5 \times 1038^{38} erg s1^{-1} and are therefore likely to power a PWN. This paper summarizes the search for PWNe in the off-pulse windows of 54 LAT-detected pulsars using 16 months of survey observations. Ten sources show significant emission, seven of these likely being of magnetospheric origin. The detection of significant emission in the off-pulse interval offers new constraints on the gamma-ray emitting regions in pulsar magnetospheres. The three other sources with significant emission are the Crab Nebula, Vela-X and a new pulsar wind nebula candidate associated with the LAT pulsar PSR J1023-5746, coincident with the TeV source HESS J1023-575. We further explore the association between the H.E.S.S. and the Fermi source by modeling its spectral energy distribution. Flux upper limits derived for the 44 remaining sources are used to provide new constraints on famous PWNe that have been detected at keV and/or TeV energies.Comment: Accepted for publication in Astrophysical Journal, 42 pages, 17 figure

    New discoveries in the transmission biology of sleeping sickness parasites: applying the basics

    Get PDF
    The sleeping sickness parasite, Trypanosoma brucei, must differentiate in response to the changing environments that it encounters during its complex life cycle. One developmental form, the bloodstream stumpy stage, plays an important role in infection dynamics and transmission of the parasite. Recent advances have shed light on the molecular mechanisms by which these stumpy forms differentiate as they are transmitted from the mammalian host to the insect vector of sleeping sickness, tsetse flies. These molecular advances now provide improved experimental tools for the study of stumpy formation and function within the mammalian bloodstream. They also offer new routes to therapy via high-throughput screens for agents that accelerate parasite development. Here, we shall discuss the recent advances that have been made and the prospects for future research now available

    Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe

    Get PDF
    The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. (2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A. Reimer, L.C. Reye

    Explaining Institutional Change: Why Elected Politicians Implement Direct Democracy

    Get PDF
    In existing models of direct democratic institutions, the median voter benefits, but representative politicians are harmed since their policy choices can be overridden. This is a puzzle, since representative politicians were instrumental in creating these institutions. I build a model of direct democracy that explains why a representative might benefit from tying his or her own hands in this way. The key features are (1) that voters are uncertain about their representative's preferences; (2) that direct and representative elections are complementary ways for voters to control outcomes. The model shows that some politicians benefit from the introduction of direct democracy, since they are more likely to survive representative elections: direct democracy credibly prevents politicians from realising extreme outcomes. Historical evidence from the introduction of the initiative, referendum and recall in America broadly supports the theory, which also explains two empirical results that have puzzled scholars: legislators are trusted less, but reelected more, in US states with direct democracy. I conclude by discussing the potential for incomplete information and signaling models to improve our understanding of institutional change more generally
    corecore