24 research outputs found

    Chronic inhibition of the norepinephrine transporter in the brain participates in the seizure sensitization to cocaine and local anesthetics

    Get PDF
    Involvement of chronic inhibition of monoamine transporters (MAT) in the brain concerning the sensitization of cocaine- and local anesthetic-induced seizures was studied in mice. Repeated administration of subconvulsive doses of meprylcaine as well as cocaine, both of which inhibit MAT, but not lidocaine, which does not inhibit MAT, increased seizure activity and produced sensitization to other local anesthetics. Effects of 5 daily treatments of monoamine transporter inhibitors on lidocaine-induced convulsions were examined 2 or 3 days after the last dose of the inhibitors. The daily treatments of GBR 12935, a specific inhibitor of dopamine uptake, significantly increased the incidence and the intensity of lidocaine-induced convulsions at 20 mg/kg and decreased the threshold of the convulsions. The daily treatments of desipramine and maprotiline, selective norepinephrine uptake inhibitors, markedly increased the incidence and intensity of lidocaine-induced convulsions, and decreased the threshold with dose-dependent manner between 5 and 20 mg/kg. The daily treatments of citaloplam, a selective serotonin uptake inhibitor, 10 and 20 mg/kg, produced no significant increase in the incidence or intensity of lidocaine-induced convulsions but decreased the threshold of the convulsions. These results suggest that the chronic intermittent inhibition of monoamine uptake increases susceptibility to cocaine- and local anesthetic-induced seizures, and a norepinephrine transporter is an integral component of this sensitization

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    Expression and function of variants of human catecholamine transporters lacking the fifth transmembrane region encoded by exon 6.

    Get PDF
    BACKGROUND: The transporters for dopamine (DAT) and norepinephrine (NET) are members of the Na+- and Cl--dependent neurotransmitter transporter family SLC6. There is a line of evidence that alternative splicing results in several isoforms of neurotransmitter transporters including NET. However, its relevance to the physiology and pathology of the neurotransmitter reuptake system has not been fully elucidated. METHODOLOGY/PRINCIPAL FINDINGS: We found novel isoforms of human DAT and NET produced by alternative splicing in human blood cells (DAT) and placenta (NET), both of which lacked the region encoded by exon 6. RT-PCR analyses showed a difference in expression between the full length (FL) and truncated isoforms in the brain and peripheral tissues, suggesting tissue-specific alternative splicing. Heterologous expression of the FL but not truncated isoforms of DAT and NET in COS-7 cells revealed transport activity. However, immunocytochemistry with confocal microscopy and a cell surface biotinylation assay demonstrated that the truncated as well as FL isoform was expressed at least in part in the plasma membrane at the cell surface, although the truncated DAT was distributed to the cell surface slower than FL DAT. A specific antibody to the C-terminus of DAT labeled the variant but not FL DAT, when cells were not treated with Triton for permeabilization, suggesting the C-terminus of the variant to be located extracellulary. Co-expression of the FL isoform with the truncated isoform in COS-7 cells resulted in a reduced uptake of substrates, indicating a dominant negative effect of the variant. Furthermore, an immunoprecipitation assay revealed physical interaction between the FL and truncated isoforms. CONCLUSIONS/SIGNIFICANCE: The unique expression and function and the proposed membrane topology of the variants suggest the importance of isoforms of catecholamine transporters in monoaminergic signaling in the brain and peripheral tissues

    Long-term prognostic value of whole-heart coronary magnetic resonance angiography

    No full text
    Abstract Background Coronary magnetic resonance angiography (CMRA) allows non-ionizing visualization of luminal narrowing in coronary artery disease (CAD). Although a prior study showed the usefulness of CMRA for risk stratification in short-term follow-up, the long-term prognostic value of CMRA remains unclear. The purpose of this study was to evaluate the long-term prognostic value of CMRA. Methods A total of 506 patients without history of myocardial infarction or prior coronary artery revascularization underwent free-breathing whole-heart CMRA between 2009 and 2015. Images were acquired using a 1.5 T or 3 T scanner and visually evaluated as the consensus decisions of two observers. Obstructive CAD on CMRA was defined as luminal narrowing of ≥ 50% in at least one coronary artery. Major adverse cardiac events (MACE) comprised cardiac death, nonfatal myocardial infarction, and unstable angina. Results Obstructive CAD on CMRA was observed in 214 patients (42%). During follow-up (median, 5.6 years), 31 MACE occurred. Kaplan–Meier curve analysis revealed a significant difference in event-free survival between patients with and without obstructive CAD for MACE (log-rank, p = 0.003) and cardiac death (p = 0.012). Annualized event rates for MACE in patients with no obstructive CAD, 1-vessel disease, 2-vessel disease, and left-main or 3-vessel disease were 0.6%, 1.5%, 2.3%, and 3.6%, respectively (log-rank, p = 0.003). Cox proportional hazard regression analysis showed that, among obstructive CAD on CMRA and clinical risk factors (age, sex, hypertension, diabetes, dyslipidemia, smoking, and family history of CAD), obstructive CAD and diabetes were significant predictors of MACE (hazard ratios, 2.9 [p = 0.005] and 2.2 [p = 0.034], respectively). In multivariate analysis, obstructive CAD remained an independent predictor (adjusted hazard ratio, 2.6 [p = 0.010]) after adjusting for diabetes. Addition of obstructive CAD to clinical risk factors significantly increased the global chi-square result from 8.3 to 13.8 (p = 0.022). Conclusions In long-term follow-up, free breathing whole heart CMRA allows non-invasive risk stratification for MACE and cardiac death and provides incremental prognostic value over conventional risk factors in patients without a history of myocardial infarction or prior coronary artery revascularization. The presence and severity of obstructive CAD detected by CMRA were associated with worse prognosis. Importantly, patients without obstructive CAD on CMRA displayed favorable prognosis

    Radiotherapy for T1N0M0 Esophageal Cancer: Analyses of the Predictive Factors and the Role of Endoscopic Submucosal Dissection in the Local Control

    No full text
    Several therapeutic options are available for clinical T1N0M0 thoracic esophageal squamous cell carcinoma (stage I ESCC); however, the studies on the treatment results are limited. This study assessed the outcomes of stage I ESCC treated with radiotherapy (RT), determined predictive factors, and evaluated the benefits of endoscopic submucosal dissection (ESD) combined with RT. We retrospectively analyzed the data of 50 patients (41 men, 9 women; median age, 66 years) with stage I ESCC treated with RT. The median total irradiation dose was 50 Gy. Elective nodal irradiation (ENI) was performed in 17 patients and ESD in 29 patients (ESD group). Forty-six patients concurrently received chemotherapy with RT. The median tumor length of ESD and non-ESD groups was 2.3 and 5 cm, respectively. The median follow-up was 33 months. The 3-year overall survival, disease-free survival (DFS), and local control (LC) rates were 77.3%, 61.1%, and 88.1%, respectively. Grade 3 adverse events occurred in 14 patients. T stage and tumor length were significant prognostic factors for 3-year DFS and 3-year LC, respectively. ESD appeared to be an important prognostic factor for LC. ENI and total irradiation dose above 50.4 Gy were not predictive factors. Our findings might help in treatment decisions for stage I ESCC

    Endoscopic submucosal dissection followed by chemoradiotherapy for superficial esophageal cancer: choice of new approach

    No full text
    Abstract Background The standard treatment for superficial esophageal cancer (SEC) involving muscularis mucosal (T1a-MM) or submucosal (T1b) invasion has been the surgical resection of the esophagus. However, esophagectomy with extended lymph node dissection is highly invasive. Recent reports have shown that endoscopic submucosal dissection (ESD) followed by chemoradiotherapy (CRT) has promising results and might become a new therapeutic approach. This retrospective study aimed to elucidate the efficacy and safety of this new treatment. Methods Patients with clinical stage T1b tumor without apparent metastasis treated with ESD followed by CRT from 2014 to 2017 (the CRT group) were included. The outcomes on disease-free survival (DFS) of this group were compared with those of consecutive patients in a historical control group who underwent ESD followed by esophagectomy (the esophagectomy group) between 2008 and 2015. Results Of 32 patients analyzed, 16 were in the CRT group and 16 with similar stage cancer were in the esophagectomy group. Radiotherapy was completed in all patients, and the incidence of grade ≥ 3 nonhematologic adverse events was 6%. The 2-year overall survival rates were 100%, and locoregional control was achieved in all patients in the CRT group, and the 2-year DFS rates were 88 and 100% for the CRT and esophagectomy groups, respectively, without significant differences. Conclusions Our data confirmed our new approach as being safe and effective for locoregional control and may provide a nonsurgical treatment option for patients with clinical stage T1b tumors

    C-terminal region regulates the functional expression of human noradrenaline transporter splice variants

    No full text
    The NET [noradrenaline (norepinephrine) transporter], an Na(+)/Cl(−)-dependent neurotransmitter transporter, has several isoforms produced by alternative splicing in the C-terminal region, each differing in expression and function. We characterized the two major isoforms of human NET, hNET1, which has seven C-terminal amino acids encoded by exon 15, and hNET2, which has 18 amino acids encoded by exon 16, by site-directed mutagenesis in combination with NE (noradrenaline) uptake assays and cell surface biotinylation. Mutants lacking one third or more of the 24 amino acids encoded by exon 14 exhibited neither cell surface expression nor NE uptake activity, with the exception of the mutant lacking the last eight amino acids of hNET2, whose expression and uptake resembled that of the WT (wild-type). A triple alanine replacement of a candidate motif (ENE) in this region mimicked the influences of the truncation. Deletion of either the last three or another four amino acids of the C-terminus encoded by exon 15 in hNET1 reduced the cell surface expression and NE uptake, whereas deletion of all seven residues reduced the transport activity but did not affect the cell surface expression. Replacement of RRR, an endoplasmic reticulum retention motif, by alanine residues in the C-terminus of hNET2 resulted in a similar expression and function compared with the WT, while partly recovering the effects of the mutation of ENE. These findings suggest that in addition to the function of the C-terminus, the common proximal region encoded by exon 14 regulates the functional expression of splice variants, such as hNET1 and hNET2
    corecore