28 research outputs found

    Small RNA sequencing of sporadic amyotrophic lateral sclerosis cerebrospinal fluid reveals differentially expressed miRNAs related to neural and glial activity

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a clinical subtype of motor neurone disease (MND), a fatal neurodegenerative disease involving the loss of both the upper and lower motor neurones from the motor cortex, brainstem, and spinal cord. Identifying specific disease biomarkers would help to not only improve diagnostic delay but also to classify disease subtypes, monitor response to therapeutic drugs and track disease progression. miRNAs are small non-coding RNA responsible for regulating gene expression and ultimately protein expression and have been used as biomarkers for many cancers and neurodegenerative disorders. Investigating the detection of miRNAs in cerebrospinal fluid (CSF), the fluid that bathes the central nervous system (CNS) is a prime target for identifying potential biomarkers for ALS. This is the first study to investigate the expression of miRNAs in the CSF of ALS patients using small RNA sequencing. We detected 11 differentially expressed miRNAs in the CSF of sporadic ALS (sALS) patients related to neural and glial activity. Additionally, miRNAs involved in glucose metabolism and the regulation of oxidative stress were also identified. Detecting the presence of potential CSF derived miRNA biomarkers in sALS could open up a whole new area of knowledge to help gain a better understanding of disease pathophysiology. Additionally, with further investigation, the tracking of CSF miRNA over the disease course could be used to follow the disease progression and monitor the effect of novel therapeutics that could be personalized to an individual disease phenotype

    Establishing mRNA and microRNA interactions driving disease heterogeneity in amyotrophic lateral sclerosis patient survival

    Get PDF
    Amyotrophic lateral sclerosis is a fatal neurodegenerative disease, associated with the degeneration of both upper and lower motor neurons of the motor cortex, brainstem and spinal cord. Death in most patients results from respiratory failure within 3–4 years from symptom onset. However, due to disease heterogeneity some individuals survive only months from symptom onset while others live for several years. Identifying specific biomarkers that aid in establishing disease prognosis, particularly in terms of predicting disease progression, will help our understanding of amyotrophic lateral sclerosis pathophysiology and could be used to monitor a patient’s response to drugs and therapeutic agents. Transcriptomic profiling technologies are continually evolving, enabling us to identify key gene changes in biological processes associated with disease. MicroRNAs are small non-coding RNAs typically associated with regulating gene expression, by degrading mRNA or reducing levels of gene expression. Being able to associate gene expression changes with corresponding microRNA changes would help to distinguish a more complex biomarker signature enabling us to address key challenges associated with complex diseases such as amyotrophic lateral sclerosis. The present study aimed to investigate the transcriptomic profile (mRNA and microRNA) of lymphoblastoid cell lines from amyotrophic lateral sclerosis patients to identify key signatures that are distinguishable in those patients who suffered a short disease duration (6 years) (n = 20). Transcriptional profiling of microRNA–mRNA interactions from lymphoblastoid cell lines in amyotrophic lateral sclerosis patients revealed differential expression of genes involved in cell cycle, DNA damage and RNA processing in patients with longer survival from disease onset compared with those with short survival. Understanding these particular microRNA–mRNA interactions and the pathways in which they are involved may help to distinguish potential therapeutic targets that could exert neuroprotective effects to prolong the life expectancy of amyotrophic lateral sclerosis patients

    Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model

    Get PDF
    Summary Background Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive, fatal motor neuron disease with a variable natural history. There are no accurate models that predict the disease course and outcomes, which complicates risk assessment and counselling for individual patients, stratification of patients for trials, and timing of interventions. We therefore aimed to develop and validate a model for predicting a composite survival endpoint for individual patients with ALS. Methods We obtained data for patients from 14 specialised ALS centres (each one designated as a cohort) in Belgium, France, the Netherlands, Germany, Ireland, Italy, Portugal, Switzerland, and the UK. All patients were diagnosed in the centres after excluding other diagnoses and classified according to revised El Escorial criteria. We assessed 16 patient characteristics as potential predictors of a composite survival outcome (time between onset of symptoms and non-invasive ventilation for more than 23 h per day, tracheostomy, or death) and applied backward elimination with bootstrapping in the largest population-based dataset for predictor selection. Data were gathered on the day of diagnosis or as soon as possible thereafter. Predictors that were selected in more than 70% of the bootstrap resamples were used to develop a multivariable Royston-Parmar model for predicting the composite survival outcome in individual patients. We assessed the generalisability of the model by estimating heterogeneity of predictive accuracy across external populations (ie, populations not used to develop the model) using internal–external cross-validation, and quantified the discrimination using the concordance (c) statistic (area under the receiver operator characteristic curve) and calibration using a calibration slope. Findings Data were collected between Jan 1, 1992, and Sept 22, 2016 (the largest data-set included data from 1936 patients). The median follow-up time was 97·5 months (IQR 52·9–168·5). Eight candidate predictors entered the prediction model: bulbar versus non-bulbar onset (univariable hazard ratio [HR] 1·71, 95% CI 1·63–1·79), age at onset (1·03, 1·03–1·03), definite versus probable or possible ALS (1·47, 1·39–1·55), diagnostic delay (0·52, 0·51–0·53), forced vital capacity (HR 0·99, 0·99–0·99), progression rate (6·33, 5·92–6·76), frontotemporal dementia (1·34, 1·20–1·50), and presence of a C9orf72 repeat expansion (1·45, 1·31–1·61), all p<0·0001. The c statistic for external predictive accuracy of the model was 0·78 (95% CI 0·77–0·80; 95% prediction interval [PI] 0·74–0·82) and the calibration slope was 1·01 (95% CI 0·95–1·07; 95% PI 0·83–1·18). The model was used to define five groups with distinct median predicted (SE) and observed (SE) times in months from symptom onset to the composite survival outcome: very short 17·7 (0·20), 16·5 (0·23); short 25·3 (0·06), 25·2 (0·35); intermediate 32·2 (0·09), 32·8 (0·46); long 43·7 (0·21), 44·6 (0·74); and very long 91·0 (1·84), 85·6 (1·96). Interpretation We have developed an externally validated model to predict survival without tracheostomy and non-invasive ventilation for more than 23 h per day in European patients with ALS. This model could be applied to individualised patient management, counselling, and future trial design, but to maximise the benefit and prevent harm it is intended to be used by medical doctors only. Funding Netherlands ALS Foundation

    The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients

    Get PDF
    The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently, we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the “REGISTRY” cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a modifying effect of ATG7 in these REGISTRY patients and in patients of our previous HD cohort according to their ethnic origin, we identified a significant effect of the ATG7 V471A polymorphism on the HD age at onset only in the Italian population (327 patients). In these Italian patients, the polymorphism is associated with a 6-years earlier disease onset and thus seems to have an aggravating effect. We could specify the role of ATG7 as a genetic modifier for HD particularly in the Italian population. This result affirms the modifying influence of the autophagic pathway on the course of HD, but also suggests population-specific modifying mechanisms in HD pathogenesis

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Synthesis and Biological Evaluation of 2-(5-Methyl-4-Phenyl-2-Oxopyrrolidin-1-Yl)-Acetamide Stereoisomers as Novel Positive Allosteric Modulators of Sigma-1 Receptor

    No full text
    Novel positive allosteric modulators of sigma-1 receptor represented by 2-(5-methyl-4-phenyl-2-oxopyrrolidin-1-yl)-acetamide enantiomers were synthesised using an asymmetric Michael addition of 2-nitroprop-1-enylbenzene to diethyl malonate. Following the chromatographic separation of the methyl erythro- and threo-4-nitro-3R- and 3S-phenylpentanoate diastereoisomers, target compounds were obtained by their reductive cyclisation into 5-methyl-4- phenylpyrrolidin-2-one enantiomers and the attachment of the acetamide group to the heterocyclic nitrogen. Experiments with electrically stimulated rat vas deference contractions induced by the PRE-084, an agonist of sigma-1 receptor, showed that (4R,5S)- and (4R,5R)-2-(5-methyl-4-phenyl-2-oxopyrrolidin-1-yl)- acetamides with an R-configuration at the C-4 chiral centre in the 2-pyrrolidone ring were more effective positive allosteric modulators of sigma-1 receptor than were their optical antipodes

    Prediction of personalised prognosis in patients with amyotrophic lateral sclerosis: development and validation of a prediction model

    No full text
    Background: Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive, fatal motor neuron disease with a variable natural history. There are no accurate models that predict the disease course and outcomes, which complicates risk assessment and counselling for individual patients, stratification of patients for trials, and timing of interventions. We therefore aimed to develop and validate a model for predicting a composite survival endpoint for individual patients with ALS. Methods: We obtained data for patients from 14 specialised ALS centres (each one designated as a cohort) in Belgium, France, the Netherlands, Germany, Ireland, Italy, Portugal, Switzerland, and the UK. All patients were diagnosed in the centres after excluding other diagnoses and classified according to revised El Escorial criteria. We assessed 16 patient characteristics as potential predictors of a composite survival outcome (time between onset of symptoms and noninvasive ventilation for more than 23 h per day, tracheostomy, or death) and applied backward elimination with bootstrapping in the largest population-based dataset for predictor selection. Data were gathered on the day of diagnosis or as soon as possible thereafter. Predictors that were selected in more than 70% of the bootstrap resamples were used to develop a multivariable Royston-Parmar model for predicting the composite survival outcome in individual patients. We assessed the generalisability of the model by estimating heterogeneity of predictive accuracy across external populations (ie, populations not used to develop the model) using internal–external cross-validation, and quantified the discrimination using the concordance (c) statistic (area under the receiver operator characteristic curve) and calibration using a calibration slope. Findings: Data were collected between Jan 1, 1992, and Sept 22, 2016 (the largest data-set included data from 1936 patients). The median follow-up time was 97·5 months (IQR 52·9–168·5). Eight candidate predictors entered the prediction model: bulbar versus non-bulbar onset (univariable hazard ratio [HR] 1·71, 95% CI 1·63–1·79), age at onset (1·03, 1·03–1·03), definite versus probable or possible ALS (1·47, 1·39–1·55), diagnostic delay (0·52, 0·51–0·53), forced vital capacity (HR 0·99, 0·99–0·99), progression rate (6·33, 5·92–6·76), frontotemporal dementia (1·34, 1·20–1·50), and presence of a C9orf72 repeat expansion (1·45, 1·31–1·61), all p&lt;0·0001. The c statistic for external predictive accuracy of the model was 0·78 (95% CI 0·77–0·80; 95% prediction interval [PI] 0·74–0·82) and the calibration slope was 1·01 (95% CI 0·95–1·07; 95% PI 0·83–1·18). The model was used to define five groups with distinct median predicted (SE) and observed (SE) times in months from symptom onset to the composite survival outcome: very short 17·7 (0·20), 16·5 (0·23); short 25·3 (0·06), 25·2 (0·35); intermediate 32·2 (0·09), 32·8 (0·46); long 43·7 (0·21), 44·6 (0·74); and very long 91·0 (1·84), 85·6 (1·96).Interpretation We have developed an externally validated model to predict survival without tracheostomy and non-invasive ventilation for more than 23 h per day in European patients with ALS. This model could be applied to individualised patient management, counselling, and future trial design, but to maximise the benefit and prevent harm it is intended to be used by medical doctors only.</p
    corecore