25 research outputs found

    European aerosol phenomenology - 8 : Harmonised source apportionment of organic aerosol using 22 Year-long ACSM/AMS datasets

    Get PDF
    Organic aerosol (OA) is a key component of total submicron particulate matter (PM1), and comprehensive knowledge of OA sources across Europe is crucial to mitigate PM1 levels. Europe has a well-established air quality research infrastructure from which yearlong datasets using 21 aerosol chemical speciation monitors (ACSMs) and 1 aerosol mass spectrometer (AMS) were gathered during 2013-2019. It includes 9 non-urban and 13 urban sites. This study developed a state-of-the-art source apportionment protocol to analyse long-term OA mass spectrum data by applying the most advanced source apportionment strategies (i.e., rolling PMF, ME-2, and bootstrap). This harmonised protocol was followed strictly for all 22 datasets, making the source apportionment results more comparable. In addition, it enables quantification of the most common OA components such as hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking-like OA (COA), more oxidised-oxygenated OA (MO-OOA), and less oxidised-oxygenated OA (LO-OOA). Other components such as coal combustion OA (CCOA), solid fuel OA (SFOA: mainly mixture of coal and peat combustion), cigarette smoke OA (CSOA), sea salt (mostly inorganic but part of the OA mass spectrum), coffee OA, and ship industry OA could also be separated at a few specific sites. Oxygenated OA (OOA) components make up most of the submicron OA mass (average = 71.1%, range from 43.7 to 100%). Solid fuel combustion-related OA components (i.e., BBOA, CCOA, and SFOA) are still considerable with in total 16.0% yearly contribution to the OA, yet mainly during winter months (21.4%). Overall, this comprehensive protocol works effectively across all sites governed by different sources and generates robust and consistent source apportionment results. Our work presents a comprehensive overview of OA sources in Europe with a unique combination of high time resolution (30-240 min) and long-term data coverage (9-36 months), providing essential information to improve/validate air quality, health impact, and climate models.Peer reviewe

    Formation of 13C/12C Isotope Ratios in Speleothems: A Semi-Dynamic Model

    No full text
    A theoretical approach towards predicting the carbon isotope composition of carbonate cave deposits is presented. The proposed model simulates time variations of both the chemical and isotopic composition of the carbonate solution and deposited calcite in the course of CaCO3 precipitation. Two phases of the precipitation process are distinguished and treated separately: initial outgassing of the solution until a certain degree of supersaturation of CO3^2- ions is reached and subsequent precipitation of CaCO3 related to further outgassing. Precipitation rates of CaCO3 predicted by the model agree fairly well with literature data. The model predicts Delta-13C values of deposited calcite within a range of ca −16 to +3 per mil depending on temperature, chemical and isotope parameters of the initial solution and actual degree of the precipitation process.This material was digitized as part of a cooperative project between Radiocarbon and the University of Arizona Libraries.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    Spatial and temporal variability of stable isotope composition of precipitation over the South American continent

    No full text
    The International Atomic Energy Agency (IAEA), in collaboration with the World Meteorological Organization (WMO) is conducting a world-wide survey of the isotope composition of precipitation. At present, around 60 stations are providing information on the stable isotope composition of precipitation over the South American continent. During the recent years, several national monitoring networks have been initiated (Argentina, Brazil, Chile, Ecuador, Peru). They provide a valuable contribution to the global IAEA/WMO database. The paper is focussed on spatial and temporal variability of the stable isotope composition of precipitation, observed over the South American continent. The relationship between isotopic signature of precipitation and climatically relevant parameters, such as surface air temperature or amount of precipitation is discussed in some detail.Variabilité spatiale et temporelle de la composition en isotopes stables de la précipitation sur le continent sud américain. L'Agence Internationale de l'Énergie Atomique, en coopération avec l'Organisation Météorologique Mondiale, exploite un réseau mondial de stations pour la prise d'échantillons mensuels de précipitation. Actuellement, à peu près 60 stations fournissent des informations sur la composition isotopique de la précipitation sur le continent sudaméricain. Ces dernières années plusieurs réseaux d'échantillonnage d'un caractère national (Argentine, Brésil, Chili, Équateur, Pérou) ont été initiés. Les données apportées par ces réseaux contribuent au réseau mondial de l'AIEA/OMM. Ces travaux se concentrent sur l'étude de la variabilité spatiale et temporelle de la composition isotopique stable de la précipitation sur le continent. Dans cette étude, est examinée en détail la relation entre la composition isotopique de la précipitation dans la région et quelques paramètres climatiques, tels que la quantité de précipitation et la température de l'air.Variabilidad espacial y temporal de la composición de isótopos estables de la precipitación en el continente sudamericano. El Organismo Internacional de Energía Atómica (OIEA), en colaboración con la Organización Meteorológica Mundial (OMM), está llevando a cabo un estudio a escala global de la composición isotópica de la precipitación a partir de muestras mensuales de lluvia recogidas en estaciones meteorológicas. En la actualidad alrededor de 60 estaciones proporcionan información sobre la composición isotópica de la precipitación en el continente sudamericano. Durante los últimos años se han establecido en la región varias redes de control con carácter nacional (Argentina, Brasil, Chile, Ecuador, Perú). Los datos aportados por estas redes representan una valiosa contribución a la red mundial del OIEA /OMM. Este trabajo se centra en el estudio de la variabilidad espacial y temporal de la composición de isotópos estables de la precipitación a escala del continente. En este estudio se examina con cierto detalle la relación aparente entre la composición isotópica de la precipitación en la región y algunos parámetros climáticos tales como la cantidad de precipitación y la temperatura del aire.Rozanski Kazimierz, Araguás Araguás Luís. Spatial and temporal variability of stable isotope composition of precipitation over the South American continent. In: Bulletin de l'Institut Français d'Études Andines, tome 24, N°3, 1995. Eaux, glaciers & changements climatiques dans les Andes tropicales. pp. 379-390

    Intercalibration of Environmental Isotope Measurements: The Program of the International Atomic Energy Agency

    No full text
    From the International Workshop on Intercomparison of Radiocarbon Laboratories.We briefly present here the environmental isotope intercalibration programs of the International Atomic Energy Agency (IAEA). In fact, the IAEA has implemented two parallel programs during the last 20 years: for stable isotopes of light elements and for a radioactive isotope of hydrogen, tritium. This IAEA activity resulted in the preparation of a number of reference and intercomparison materials of various types, now stored in the Agency and available upon request.This material was digitized as part of a cooperative project between Radiocarbon and the University of Arizona Libraries.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    Do n-alkane biomarkers in soils/sediments reflect the δ 2-H isotopic composition of precipitation? A case study from Mt. Kilimanjaro and implications for paleoaltimetry and paleoclimate research

    No full text
    During the last decade compound-specific deuterium (2H) analysis of plant leaf wax-derived n-alkanes has become a promising and popular tool in paleoclimate research. This is based on the widely accepted assumption that n-alkanes in soils and sediments generally reflect δ2H of precipitation (δ2Hprec). Recently, several authors suggested that δ2H of n-alkanes (δ2Hn-alkanes) can also be used as a proxy in paleoaltimetry studies. Here, we present results from a δ2H transect study (∼1500 to 4000 m above sea level [a.s.l.]) carried out on precipitation and soil samples taken from the humid southern slopes of Mt. Kilimanjaro. Contrary to earlier suggestions, a distinct altitude effect in δ2Hprec is present above ∼2000 m a.s.l., that is, δ2Hprec values become more negative with increasing altitude. The compound-specific δ2H values of nC27 and nC29 do not confirm this altitudinal trend, but rather become more positive both in the O-layers (organic layers) and the Ah-horizons (mineral topsoils). Although our δ2Hn-alkane results are in agreement with previously published results from the southern slopes of Mt. Kilimanjaro [Peterse F, van der Meer M, Schouten S, Jia G, Ossebaar J, Blokker J, Sinninghe Damsté J. Assessment of soil n-alkane δD and branched tetraether membrane lipid distributions as tools for paleoelevation reconstruction. Biogeosciences. 2009;6:2799–2807], a re-interpretation is required given that the δ2Hn-alkane results do not reflect the δ2Hprec results. The theoretical framework for this re-interpretation is based on the evaporative isotopic enrichment of leaf water associated with the transpiration process. Modelling results show that relative humidity, decreasing considerably along the southern slopes of Mt. Kilimanjaro (from 78 % in ∼2000 m a.s.l. to 51 % in 4000 m a.s.l.), strongly controls δ2Hleaf water. The modelled 2H leaf water enrichment along the altitudinal transect matches well the measured 2H leaf water enrichment as assessed by using the δ2Hprec and δ2Hn-alkane results and biosynthetic fractionation during n-alkane biosynthesis in leaves. Given that our results clearly demonstrate that n-alkanes in soils do not simply reflect δ2Hprec but rather δ2Hleaf water, we conclude that care has to be taken not to over-interpret δ2Hn-alkane records from soils and sediments when reconstructing δ2H of paleoprecipitation. Both in paleoaltimetry and in paleoclimate studies changes in relative humidity and consequently in δ2Hn-alkane values can completely mask altitudinally or climatically controlled changes in δ2Hprec

    Atmospheric 14

    No full text
    We present here first results of 14CO2 monitoring at two sampling sites in the equatorial region of the South American continent (station Aychapicho, Ecuador and station Llano del Hato, Venezuela). We also include the data for two other stations representing undisturbed marine atmosphere at mid-latitudes of both hemispheres, far from large continental sources and sinks of CO2 (station Izaña, Tenerife, Spain and station Cape Grim, Tasmania). Between 1991 and 1993, 14CO2 levels in the tropical troposphere were generally higher by 2-5 per mil when compared to mid-latitudes of both hemispheres. This apparent maximum of 14C in the tropics can be explained by two major factors: 1) emissions of 14C-free fossil fuel CO2, restricted mainly to mid-latitudes of the northern hemisphere; and 2) 14C depletion due to gas exchange with circumpolar Antarctic upwelling water, influencing mainly midand high southern latitudes. The Delta-14C record so far available for the Aychapicho station provides direct evidence for a regional reduction of atmospheric 14CO2 levels due to gas exchange with 14Cdepleted equatorial surface ocean in the upwelling regions and dilution with the 14C-depleted CO2 released in these areas. Recurrent ENSO events, turning on and off the 14C-depleted CO2 source in the tropical Pacific, lead to relatively large temporal variations of the atmospheric 14C level in this region.This material was digitized as part of a cooperative project between Radiocarbon and the University of Arizona Libraries.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    The IAEA 14C Intercomparison Exercise 1990

    Get PDF
    As a follow-up to the meeting of experts convened at the International Atomic Energy Agency (IAEA) in February 1989, and the International 14C Workshop held in Glasgow in September 1989, the 14C Quality Assurance Program was formulated. In a joint effort of several radiocarbon teams and IAEA staff, we have prepared a set of five new intercomparison materials. These are natural materials frequently used by radiocarbon laboratories. The materials were distributed to 137 laboratories in May 1990. In February 1991, a meeting of experts was convened in Vienna to evaluate the results, to determine the radiocarbon activity of the five samples expressed in % Modern (pMC) terms and to define the 13C/12C ratio, and to make recommendations on further use of these materials. We present here the results of the exercise and the agreed consensus values for each of the five materials and discuss the different analyses that were undertaken.
    corecore