6 research outputs found

    Polycyclic aromatic hydrocarbons in permafrost peatlands

    Get PDF
    The concentrations of 15 individual PAHs in 93 peat cores have been determined by using high-performance liquid chromatography methods. In the profile the qualitative and quantitative composition of PAHs was non-uniform estimated in a wide range: from 112 to 3673 ng/g with mean 1214 ± 794 ng/g. Among 15 identified individual PAHs, the main contribution to their total amount was made by heavy highly condensed PAHs in the Eastern European peat plateaus, in particular, 6-nuclear benzo[ghi]perylene (1021 ± 707 ng/g), whereas in West Siberian permafrost peatlands, light PAHs were dominating, mostly naphthalene and phenanthrene (211 ± 87 and 64 ± 25 ng/g, respectively). The grass-equisetum peat contained the maximum of heavy PAHs and the dwarf shrub-grass—the minimum. In grass-dwarf shrub, grass-moss and moss peat, the share of 2-nuclear PAHs was most significant: naphthalene and fluorene, as well as 6-nuclear benzo[ghi]perylene. The presence of benzo[ghi]perylene in the entire peat strata, including its permafrost layer, was a marker of the anaerobic conditions that persisted throughout the Holocene and they were necessary for the synthesis of this compound

    Climatic Factors Influencing the Anthrax Outbreak of 2016 in Siberia, Russia

    Get PDF
    In 2016, an outbreak of anthrax killing thousands of reindeer and affecting dozens of humans occurred on the Yamal peninsula, Northwest Siberia, after 70 years of epidemiological situation without outbreaks. The trigger of the outbreak has been ascribed to the activation of spores due to permafrost thaw that was accelerated during the summer heat wave. The focus of our study is on the dynamics of local environmental factors in connection with the observed anthrax revival. We show that permafrost was thawing rapidly for already 6 years before the outbreak. During 2011-2016, relatively warm years were followed by cold years with a thick snow cover, preventing freezing of the soil. Furthermore, the spread of anthrax was likely intensified by an extremely dry summer of 2016. Concurrent with the long-term decreasing trend in the regional annual precipitation, the rainfall in July 2016 was less than 10% of its 30-year mean value. We conclude that epidemiological situation of anthrax in the previously contaminated Arctic regions requires monitoring of climatic factors such as warming and precipitation extremes.Peer reviewe

    Permafrost is warming at a global scale

    Get PDF
    Permafrost warming has the potential to amplify global climate change, because when frozen sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment of permafrost temperature change has been compiled. Here we use a global data set of permafrost temperature time series from the Global Terrestrial Network for Permafrost to evaluate temperature change across permafrost regions for the period since the International Polar Year (2007-2009). During the reference decade between 2007 and 2016, ground temperature near the depth of zero annual amplitude in the continuous permafrost zone increased by 0.39 ± 0.15 °C. Over the same period, discontinuous permafrost warmed by 0.20 ± 0.10 °C. Permafrost in mountains warmed by 0.19 ± 0.05 °C and in Antarctica by 0.37 ± 0.10 °C. Globally, permafrost temperature increased by 0.29 ± 0.12 °C. The observed trend follows the Arctic amplification of air temperature increase in the Northern Hemisphere. In the discontinuous zone, however, ground warming occurred due to increased snow thickness while air temperature remained statistically unchanged

    Warming climate forcing impact from a sub-arctic peatland as a result of late Holocene permafrost aggradation and initiation of bare peat surfaces

    No full text
    Effects of permafrost aggradation on greenhouse gas (GHG) dynamics and climate forcing have not been previously quantified. Here, we reconstruct changes in GHG balances over the late Holocene for a sub-arctic peatland by applying palaeoecological data combined with measured GHG flux data, focusing on the impact of permafrost aggradation in particular. Our data suggest that permafrost initiation around 3000 years ago resulted in GHG emissions, thereby slightly weakening the general long-term peatland cooling impact. As a novel discovery, based on our chronological data of bare peat surfaces, we found that current sporadic bare peat surfaces in subarctic regions are probably remnants of more extensive bare peat areas formed by permafrost initiation. Paradoxically, our data suggest that permafrost initiation triggered by the late Holocene cooling climate generated a positive radiative forcing and a short-term climate warming feedback, mitigating the general insolation-driven late Holocene summer cooling trend. Our work with historical data demonstrates the importance of permafrost peatland dynamics for atmospheric GHG concentrations, both in the past and future. It suggests that, while thawing permafrost is likely to initially trigger a change towards wetter conditions and consequent increase in CH4 forcing, eventually the accelerated C uptake capacity under warmer climate may overcome the thaw effect when a new hydrological balance becomes established. (C) 2021 Elsevier Ltd. All rights reserved.Peer reviewe

    Permafrost is warming at a global scale

    Get PDF
    Climate change strongly impacts regions in high latitudes and altitudes that store high amounts of carbon in yet frozen ground. Here the authors show that the consequence of these changes is global warming of permafrost at depths greater than 10 m in the Northern Hemisphere, in mountains, and in Antarctica

    Permafrost is warming at a global scale

    No full text
    Permafrost warming has the potential to amplify global climate change, because when frozen sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment of permafrost temperature change has been compiled. Here we use a global data set of permafrost temperature time series from the Global Terrestrial Network for Permafrost to evaluate temperature change across permafrost regions for the period since the International Polar Year (2007-2009). During the reference decade between 2007 and 2016, ground temperature near the depth of zero annual amplitude in the continuous permafrost zone increased by 0.39 ± 0.15 °C. Over the same period, discontinuous permafrost warmed by 0.20 ± 0.10 °C. Permafrost in mountains warmed by 0.19 ± 0.05 °C and in Antarctica by 0.37 ± 0.10 °C. Globally, permafrost temperature increased by 0.29 ± 0.12 °C. The observed trend follows the Arctic amplification of air temperature increase in the Northern Hemisphere. In the discontinuous zone, however, ground warming occurred due to increased snow thickness while air temperature remained statistically unchanged
    corecore