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Abstract: In 2016, an outbreak of anthrax killing thousands of reindeer and affecting dozens of humans

occurred on the Yamal peninsula, Northwest Siberia, after 70 years of epidemiological situation without

outbreaks. The trigger of the outbreak has been ascribed to the activation of spores due to permafrost thaw that

was accelerated during the summer heat wave. The focus of our study is on the dynamics of local environ-

mental factors in connection with the observed anthrax revival. We show that permafrost was thawing rapidly

for already 6 years before the outbreak. During 2011–2016, relatively warm years were followed by cold years

with a thick snow cover, preventing freezing of the soil. Furthermore, the spread of anthrax was likely

intensified by an extremely dry summer of 2016. Concurrent with the long-term decreasing trend in the

regional annual precipitation, the rainfall in July 2016 was less than 10% of its 30-year mean value. We

conclude that epidemiological situation of anthrax in the previously contaminated Arctic regions requires

monitoring of climatic factors such as warming and precipitation extremes.
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INTRODUCTION

Anthrax has been known since ancient times with the first

descriptions dating back to Hippocrates, fifth century BC

(Schwartz 2009), and it is endemic to all the continents
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except Antarctica (Dragon and Rennie 1995; WHO 2008;

Malkhazova et al. 2019; Carlson et al. 2019). The disease is

caused by the soil bacteria Bacillus anthracis. The bacteria

are sensitive to the moisture, acidity and organic content of

soils, and their life cycles are influenced by climatic factors,

such as ambient temperature and precipitation (Dragon

and Rennie 1995; WHO 2008; Waits et al. 2018; Walsh

et al. 2018; Malkhazova et al. 2019; Carlson et al. 2019).

Therefore, some regions are more affected by anthrax than

others (for a compilation map based on outbreaks from

2005 to 2016, see Carlson et al. 2019). In the regions en-

demic for anthrax, high incidences occur during dry and

warm periods following intensive precipitation, explaining

localities of the major outbreaks in countries with warm

climates such as Turkey, Ethiopia, South Africa etc.

(Malkhazova et al. 2019; Carlson et al. 2019). In spite of

that, anthrax can survive cold climates as well. The vast

geographical range of anthrax and risk of recurrence after

years or even decades (Dragon and Rennie 1995) is due to

high resistivity of spores to unfavorable conditions and

their ability to effectively reproduce themselves (Driks

2009).

In the beginning of the twentieth century, a northern

part of Western Siberia was experiencing severe and

recurring epizootics of anthrax: more than one million

reindeer died (Popova et al. 2016). The affected territories

include a large area on Yamal peninsula (Yamal district),

somewhat smaller areas in the north of Nadym district and

in the central Tazovsky district, and many small sites in

Priuralsky, Nadym and Pur districts (Popova and Ku-

lichenko 2017). Since the 1940s and up to 2007, vaccination

of the reindeer population effectively eliminated the disease

(Popova et al. 2016; Arkhangelskaya 2016). In 2007, a

decade before the outbreak, the vaccination of the reindeer

was halted (Popova et al. 2016; Arkhangelskaya 2016).

During this decade, more than 200,000 samples of soil from

32 of known anthrax-contaminated areas of Yamal-Nenets

Autonomous District were analyzed and none showed signs

of B. anthracis (Shestakova 2016; Selyaninov et al. 2016).

Vulnerability of bacteria to repetitive freeze–thaw cycles

(Malkhazova et al. 2019) could lead to an eventual sani-

tation of the soil, given decades of epidemiological stability.

Supporting the sanitation hypothesis, Cherkassky (2003)

investigated 360 soil probes from contaminated areas on

Yamal peninsula in 1968 and found that the soil pH was in

the range of 3–5, i.e., below the threshold value of 6 (e.g.,

Van Ness 1971), and that the soil was poor in organics

(humus content below 3%).

Although absent near the soil surface, the anthrax

spores could remain intact in the carcasses of dead infected

animals buried in permafrost. Its thawing due to a warming

climate might revive previously frozen bacteria back to life

(Popova et al. 2016; Goudarzi 2016; Coghlan 2016). A re-

cent study found that B. anthracis strains isolated at Yamal

were close to those isolated from permafrost in Yakutia

(Timofeev et al. 2019), supporting the hypothesis about

permafrost thawing as a trigger for the outbreak. Here, we

considered regional (acting on the scales of * 100 km)

weather and climate parameters, connected their recent

dynamics to the dynamics of permafrost and addressed the

existing hypotheses about the anthrax outbreak on Yamal.

We started with active layer thickness (ALT) dynamics

characterizing permafrost thawing in the sites near the

outbreak location. Furthermore, we studied dynamics of

the mean annual air temperature (MAAT), as well as snow

depth and temperature-based indices, aiming to explain

ALT dynamics. To account for the joint effect of warm and

preceding cold season on ALT, we used frost numbers and

found correlations between those and ALT. Finally, we

outlined large-scale phenomena and processes potentially

relevant for anthrax outbreaks in cold climates.

METHODS

We used meteorological data sets and data on active layer

thickness from several sites in Yamal-Nenets Autonomous

District and Komi Republic, Russia, close to the location of

the outbreak (Fig. 1; Popova et al. 2016). The medical

geography data set giving some quantitative information on

the outbreak can be found in Supplementary Information,

Table S1. We started with the hypothesis that permafrost

thawing could trigger an outbreak and first considered

recent dynamics of permafrost and its link to climatic

parameters. Then, we looked into summer precipitation, a

parameter that could influence spreading of anthrax.

The active layer thickness, which is the maximum

annual thaw depth, is the parameter characterizing thawing

of permafrost. We estimated the effect of air temperature

and snow on the soil surface temperature which determines

the state and dynamics of permafrost. Temperature-based

indices that prove useful in estimates of ALT are freezing

and thawing indices (or degree-day sums) corresponding to

the sums of daily mean temperatures during cold and warm

seasons, respectively (absolute value in case of cold season,

see subsection on freezing and thawing indices below).
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Cold and warm seasons are defined as the seasons when

daily mean temperature is stably below and above 0�C,

respectively. Air freezing and thawing indices can be de-

rived from the air temperature, whereas surface freezing

and thawing indices are calculated based on the surface

temperature. The soil surface temperature is not routinely

measured at meteorological stations, so we modelled the

surface indices. From MAAT and snow depth, we estimated

a freezing n-factor (e.g., Klene et al. 2001)—the ratio be-

tween the freezing indices for surface and air, which char-

acterizes heat transfer between soil surface and air. In

winter, the soil surface temperature is higher than the air

temperature due to snow insulation, and the corresponding

freezing indices are lower. Deep snow corresponds to n-

factors close to zero, compared to no-snow conditions with

n-factor equal to unity. We calculated the surface freezing

index from the air freezing index and a freezing n-factor.

The formula can be found in subsection ‘n-factors.’ After

that, we used freezing and thawing indices for air and

surface to construct air and surface frost numbers and

studied their correlation with ALT.

Active Layer Thickness

The ALT data used in this study were taken from the open

database of Circumpolar Active Layer Monitoring network

(CALM). Five measurement sites are located in Yamal-

Nenets Autonomous District (Fig. 1, Table S2): one near

Nadym (monitoring site R1, Bobrik et al. 2015), and four

sites near Vaskiny Dachi (sites R5, R5A, R5B, R5C, Leib-

man et al. 2015). One site, Ayach-Yakha near Vorkuta (site

R2, Mazhitova and Kaverin 2007), is located in the Euro-

pean part of Russia, on the western side of Ural Mountains

(Table S2). Nadym and Vorkuta are both located in the

area of discontinuous permafrost, while Vaskiny Dachi is in

the area of continuous permafrost.

Figure 1. a Location of meteorological stations and Circumpolar Active Layer Monitoring (CALM) in Yamal-Nenets Autonomous District.

Black curves separate continuous from discontinuous permafrost areas (continuous permafrost to the north). Red circles show areas of major

anthrax epizootics, with 2650 reindeer and 36 human cases registered in Yamal district (near Novy Port) and 1 reindeer case—in Tazovsky

district (near Antipayuta). b Median snow depth and mean annual air temperature at sites to the east of Ural mountains. Thin dashed and solid

curves represent 25th and 75th quartiles. No increase in snow depth in 2014–2015. c Median snow depth and mean annual air temperature at

the sites near the Gulf of Ob. Note an increase in snow depth in 2014–2015.
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MAAT and Snow Depth

In order to estimate the influence of meteorological factors

on permafrost dynamics, we used measurements from nine

meteorological stations operated by Roshydromet (all

connected to World Meteorological Organization network)

in Yamal-Nenets Autonomous District (Fig. 1, Table S3).

Time series cover period of 2006–2018. The data were

downloaded from the site www.rp5.ru (last access February

7, 2019) and were quality controlled (SI). The variables

used for the analysis included the air temperature at two

meters height, precipitation and snow depth. Using mete-

orological data, we calculated the mean annual air tem-

perature (MAAT) and mean snow depth during freezing

seasons for different years. The MAAT was calculated as the

sum of daily mean temperatures divided by the number of

days in a year. The mean snow depth for a cold season was

calculated as the sum of snow depths, measured on the days

when they exceeded zero, divided by the total number of

these days.

Freezing and Thawing Indices

Freezing and thawing indices (or degree-day sums), If and

It respectively, were calculated using the following formu-

las:

If ¼ �
X

T<0

T; It ¼
X

T[0

T ð1Þ

where the sum is taken over all days during the freezing/

thawing season, T is the daily mean temperature. The

freezing and thawing indices calculated from the air tem-

perature, characterize the annual heat balance indicative of

air being cooled or heated during the year. In what follows,

we reserve notations If and It for the freezing and thawing

indices calculated based on air temperature. The mean

annual air temperature can be calculated as MAAT =

(It - If)/P, where P is the number of days in the year. Air

freezing and thawing indices were calculated directly from

air temperature using formula (1). Surface freezing (If surf)

and thawing (It surf) indices can be calculated from Eq. (1)

if surface temperature is used instead of air temperature.

However, surface temperature is not measured routinely at

meteorological stations.

n-Factors

The surface freezing and thawing indices can be calculated

multiplying the air indices with the corresponding n-fac-

tors. Freezing (nf) and thawing (nt) n-factors, defined as

nt(f) = It(f) surf/It(f), are the bulk coefficients characterizing

heat transfer from air to soil surface on the seasonal time

scale and accounting for snow and soil properties in winter

and vegetation and soil effects in summer (Klene et al.

2001). We used nt = 0.8 as a thawing n-factor based on the

measurements from boreholes in tundra near Nadym

(Kukkonen et al. 2020), see also Jorgensen and Kreig

(1988). The freezing n-factor nf exhibits a greater variability

(Kukkonen et al. 2020) and needs to be quantified sepa-

rately for different years. We derived nf as a function of the

mean snow depth and MAAT using model calculations by

Smith and Riseborough (2002). Similar method was used

in a recent study mapping permafrost boundaries (Obu

et al. 2019).

We calculated time series of freezing n-factors for three

meteorological stations: Novy Port, Antipayuta and Vor-

kuta (Fig. 3a, S2a, S2b). Note that snow depth was not

always measured at the station Novy Port which is the

closest to the area of anthrax outbreak. For the years when

measurements were not available (Table S3, Fig. S1b), we

used the mean snow depth calculated from the data of three

closest meteorological stations: Yangi-Yugan, Nyda and

Nadym (Fig. 1).

Frost Number

Frost number F (Nelson and Outcalt 1987) is a combina-

tion of freezing and thawing indices, F ¼
ffiffiffi
If

p
ffiffiffi
If

p
þ

ffiffiffi
It

p , and

therefore, accounts for temperature regime during both

freezing and thawing seasons. As a reference, the surface

frost number of 0.67 was used to mark the boundary be-

tween continuous and discontinuous permafrost zones

(Nelson and Outcalt 1987). Air and surface frost numbers

were calculated from air and surface freezing and thawing

indices, respectively. The locations of CALM sites do not

coincide with locations of meteorological stations; there-

fore, to calculate frost numbers, we used the data from

closest stations (Nadym for Nadym, Antipayuta for Vas-

kiny Dachi).

Summer Precipitation

As a factor influencing spread of the disease, we calculated

monthly precipitation as sums of daily precipitation in

summer and compared their mean values over periods

2005–2013 and 2014–2018 to the climatological normal of

E. Ezhova et al.
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monthly precipitation for 1981–2010. The normals were

taken from the Climate Assessment Database (CADBv2)

provided by NOAA (last access 15 July 2021).

RESULTS

Dynamics of ALT Near Outbreak Location

The geographical location of the site of a major reindeer

epizootic and human infection cases (Popova et al. 2016) is

shown in Figure 1a (see also Supplementary Information,

Table S1). All these cases occurred close to the boundary

separating zones of continuous and discontinuous per-

mafrost (Kotlyakov and Khromova 2002; Obu et al. 2019).

We analyzed the behavior of ALT from three Circumpolar

Active Layer Monitoring (CALM) sites closest (200–

400 km) to the outbreak location (Novy Port, Fig. 1a): one

to the north (Vaskiny Dachi, continuous permafrost), one

to the south (Nadym, discontinuous permafrost) and one

to the west (Vorkuta, discontinuous permafrost). In con-

trast to the heat wave hypothesis, the rate of thawing was

not enhanced in any of the sites in 2016 (Fig. 2a, Fig. S1c).

The maximum values of ALT in Vaskiny Dachi and Nadym

followed the trends already started earlier: according to

Pettitt’s test, the change point is 2011, p value is 0.02. ALT

was deepening continuously in Nadym from the minimum

in 2010 up to 2016, reaching more than 40% higher level

compared to the average value of ALT during 1997–2010.

In Vaskiny Dachi, the continuous thawing was interrupted

by freezing in 2014, so that the ALT increase was somewhat

smaller. The dynamics of the active layer in Vaskiny Dachi

show general agreement with the behavior of the mean

annual air temperature (MAAT, see Methods) (Fig. 2b), as

expected for the cold sites underlain by continuous per-

mafrost (Smith and Riseborough 2002). However, the

dynamics of ALT in Nadym cannot be explained by

warming alone.

Another important factor for permafrost thaw in the

discontinuous permafrost area is the snow depth (Williams

and Smith 1989; Stieglitz et al. 2003). Acting as an insula-

tor, snow prevents heat transfer between the cold air and

soil surface, thus suppressing freezing of soil in winter. We

identified a regional pattern in the snow depth near the

Gulf of Ob (Fig. 1c), having roughly 50% higher values in

2014–2015 compared with the period 2006–2013. The

average snow depth and the maximum snow depth reached

85 cm (Fig. S1b) and 160 cm, respectively, at one of the

stations in 2014. The outbreak of anthrax occurred in the

area of deep snow, close to the Gulf of Ob (Fig. 1). Con-

trary to this, there was no increase in the snow depth

during 2014–2015 in the sites closer to Ural Mountains, its

mean value fluctuating around 40 cm (Fig. 1b). A snow

depth should not exceed 50 cm for permafrost occurrence

in tundra near Vorkuta (Mazhitova and Kaverin, 2007;

Figure 2. a Time series of active layer thickness from Circumpolar Active Layer Monitoring sites. Relative increase in active layer thickness in

2016 as compared to its mean value before 2010 is 43% in the area of discontinuous permafrost (Nadym) and 26% in the area of continuous

permafrost (Vaskiny Dachi). Measurements from 2009 are marked as unreliable by the data PIs, therefore dashed line is used between 2008 and

2010. b Mean annual air temperature for all sites. Note similar dynamics of active layer thickness in Vaskiny Dachi and mean annual air

temperature.

Climatic Factors Influencing the Anthrax Outbreak of 2016 in Siberia, Russia



Shamanova 1970). The anthrax outbreak occurred at

higher latitudes, near Novy Port, so the corresponding

critical snow depth for permafrost occurrence is higher

(Smith and Riseborough 2002). However, the drastic snow

cover increase of 2014–2015 exceeded the critical values for

permafrost occurrence even for the lower MAAT of -

6..- 7�C observed at Novy Port. While this short-term

increase in the snow depth did not lead immediately to

permafrost degradation, such deep snow certainly kept the

soil warm during several winters in a row. More heat en-

ergy of the following thawing seasons could be expended

directly to thaw permafrost, rather than to warm deeply

frozen soil after the cold winter.

Joint Effect of Snow and Temperature on Per-

mafrost Thawing

Freezing indices for surface and air, together with estimated

n-factors for Novy Port, are shown in Figure 3a. The dif-

ference between the air and surface freezing indices is

remarkable. The air freezing index was characterized by

small-amplitude oscillations near the constant mean value,

3400�C day, with an exception of a maximum in 2010. The

soil surface freezing index was relatively constant before

2010, after which it was lower by approximately one third

in 5 years out of eight, due to either warm winters or thick

snow. The air freezing index was equal or higher than its

mean value after 2010 during 6 years out of 8, whereas the

surface index was lower than its mean value after 2010 in

5 years out of 8. In 2012 and 2016 when the snow depth

was close to 40–50 cm (Fig. 1c, S1b), the n-factor was

relatively high but the air index was low (winters were

warm). Oppositely, in 2014–2015, the air index was high,

but the n-factor was low due to deep snow (Fig. 1c, S1b).

These two factors, warm winters and deep snow, caused

persistently lower surface freezing index. These dynamics of

the surface freezing index are in qualitative agreement with

the ALT dynamics in Nadym. A rapid deepening of the

active layer was observed in 2014 (Fig. 2), characterized by

the largest snow depth in this region. Thawing indices

(Fig. 3b) also increased by ca. 15% as compared to the

mean value before 2010, indicating warmer summers.

In Antipayuta, the most northern meteorological sta-

tion considered here and closest to Vaskiny Dachi, the soil

surface freezing index after 2010 was characterized by

strong oscillations with large amplitudes (Fig. S2a). How-

ever, the lowest surface freezing indices were presumably

associated with warm winters rather than with deep snow.

Strong MAAT oscillations lead to destabilization of per-

mafrost state, especially if warmer winters are followed by

warm summers. Oppositely, for Vorkuta, we found that the

soil surface freezing index oscillated near the constant mean

value, 730 �C day, during the whole period of observations

(Fig. S2b). Note the high freezing n-factor in 2016 due to

the thin snow cover (Fig. S1b), causing a deep freezing of

soil in winter and moderating the effect of the heat wave on

Figure 3. a Air freezing index (light blue bars), surface freezing index (cyan bars) and freezing n-factor (blue curve) at Novy Port. Straight

dashed lines indicate mean surface freezing index in 2006–2009 and decreased index in 2012, 2014–2016. b Air thawing index (light red bars)

and surface thawing index (red bars).

E. Ezhova et al.



permafrost. However, ALT in Vorkuta is generally steady

(Fig. S1c), suggesting specific soil properties, most probably

characterized by an ice-enriched upper permafrost layer

(Mazhitova and Kaverin 2007). In this case, the ‘zero cur-

tain’ (phase transition) periods can be long, leading to a

lower sensitivity of permafrost to ambient conditions.

Another explanation for a steady ALT in Vorkuta is soil

subsidence due to thermokarst (Mazhitova and Kaverin

2007).

The combination of freezing and thawing indices, a

frost number (Methods), was used for linking meteoro-

logical parameters influencing permafrost dynamics and

ALT. From Figure 4, ALT in Nadym was significantly and

strongly correlated with the surface frost number (Pearson

R = - 0.73, p = 0.005) rather than the air frost number,

indicating that snow was an important factor. Oppositely,

ALT in Vaskiny Dachi was significantly and moderately

correlated with the air frost number (Pearson R = - 0.65,

p = 0.017), suggesting air temperature as the major driving

factor of permafrost dynamics (see also Fig. 2). The latter

could be a consequence of the snow distribution charac-

teristic of Central Yamal (Vaskiny Dachi), which is highly

uneven due to low tundra vegetation and strong winds

(Leibman et al. 2015). The region of outbreak was located

between Vaskiny Dachi and Nadym. The dynamics of

permafrost there could carry features of either site, but the

most effective thaw could be naturally expected at the sites

accumulating snow. The increase in ALT between 2010 and

2016 due to the temperature effect alone was 26% (estimate

for Vaskiny Dachi), but deep snow enhanced this effect

resulting in 43% increase in ALT (estimate for Nadym).

Additional characterization of permafrost thaw using

temperature on the top of permafrost for three sites is given

in SI (Sec. S2, Fig. S5).

Summer Precipitation

Oppositely to snow, the summer precipitation in Novy Port

decreased during the latest years (Fig. S3). A decreasing

trend in precipitation was previously observed at the sta-

Figure 4. Correlations of active layer thickness with air and surface frost numbers at Nadym (R1) (a, b) and Vaskiny Dachi (R5) (c, d).

Climatic Factors Influencing the Anthrax Outbreak of 2016 in Siberia, Russia



tion Mys Kamenny (Frey and Smith 2003), 70 km to the

north from Novy Port. Note that summer precipitation at

the three stations within the distance of only 200 km from

each other (Nadym, Nyda and Novy Port, Fig. 1) showed

different dynamics during the recent years (Fig. S3). Before

2005, precipitation dynamics in Nyda and Novy Port were

similar, suggesting the same mechanisms governing pre-

cipitation, and at both sites precipitation decreased. How-

ever, after 2005, precipitation patterns were completely

different with a rise in Nyda compared to a substantial

decline in Novy Port. One explanation for this difference

could be a change in vegetation in response to warming

near Nyda where a greening trend was reported during

2000–2014 (Miles and Esau 2016). In Novy Port, monthly

precipitation in July 2016 was only 5% of the climatological

normal for 1981–2010 (Fig. 5), and in Antipayuta, it was

below 20% (Fig. S4). When drought occurred, plants ex-

tracted water from deeper soils which could bring anthrax

spores to the surface (Hugh-Jones and Blackburn 2009). In

addition, the lack of precipitation increased the probability

of reindeer infection through chewing dry grass and con-

tributed to the high transmissivity of the disease by blood-

sucking insects such as tabanids, known to be more active

in warm and dry weather (Gainer 2016).

DISCUSSION AND CONCLUSION

How Climatic Factors Contribute to the Anthrax

Outbreak: An Outline

Overall, the schematic of how different factors could con-

tribute to anthrax outbreak in cold climates is shown in

Figure 6. For a fixed population of livestock (reindeer), the

availability of spores in soil (previous contamination) is of

utmost importance, whereas timing, dispersion and inci-

dence rates are connected to climatic factors. Some factors

drive permafrost thaw, thereby acting as a trigger of out-

break (warming, deep snow), while others contribute to the

spread of disease (lack of summer precipitation).

The increasing trend in the mean annual temperature

(Frey and Smith 2003) reflects enhanced warming of Arctic

as compared to lower latitudes (Arctic amplification,

Box et al. 2019). Fluctuations in the mean annual tem-

perature, showing a similar behavior at all the stations

(Fig. S1), are largely driven by the dynamics of the Arctic

oscillation (Frey and Smith 2003) which determines winter-

time synoptic activity in the region. Arctic oscillation is

subject to a random variability and has been mainly in its

positive phase since 1990s (NOAA, Climate Indicators),

Figure 5. a Month-to-month variability of precipitation and NOAA climatological normal of precipitation for 1981–2010 in Novy Port. Note

that for 2005–2012, data quality is not sufficient (i.e., up to 50% of measurements per month could be missing), nevertheless the monthly

precipitation values in summer exceed those from 2014 to 2018. Data quality for 2014–2018 is acceptable (i.e., less than 15% of data for each

month was missing, Table S4). Note decrease in summer precipitation during years 2014–2018 in comparison with climatological normal (see

also Fig. S3). Dynamics of precipitation is in accordance with the Second Roshydromet Assessment Report on Climate Change in the Russian

Federation, which identifies this region as one with the strongest decreasing trends in annual precipitation (100 mm during 1936–2010). b

Monthly precipitation in 2016–2018.

E. Ezhova et al.



which has led to warmer winters in northern Eurasia,

including West Siberia.

Another influencing factor is precipitation (Waits et al.

2018). There has been a general smooth increase in winter

precipitation related to sea ice retreat (Cohen et al. 2014).

However, the rapid permafrost thaw described here hap-

pened due to an anomalously deep snow, pointing at ex-

treme weather contribution, also mentioned by Hedlund

et al. (2014) as the factor increasing risk of infectious dis-

eases in Arctic and subarctic regions. In agreement with the

previous study showing a high spatial variability in annual

precipitation (Frey and Smith 2003), we found a high

variability in the snow depth at different meteorological

stations over the spatial scale of ca 300 km (Fig. 1). Sum-

mer precipitation is dependent on local circulation patterns

and properties of the underlying surface. As compared to

winter precipitation, it varies on the scale of only 100 km

(Fig. 5, S3).

Finally, a major anthropogenic factor influencing the

probability of outbreak is vaccination. Vaccination of

reindeer had long been a successful preventive measure in

this region (Popova et al. 2016; Kolonin 1969). Its role is to

prevent occasional infection and to stop a spreading of the

disease (WHO 2008).

Results in the Context of Literature and Implica-

tions for Future Research

Climate change introduces a risk of the global anthrax

outbreak, both in lower and higher latitudes (Kangbai and

Momoh 2017). A recent study mapping global distribution

of B. Anthracis (Carlson et al. 2019) admits lack of the data

on the outbreaks in northern latitudes. Here, we provide

the summary of the data characterizing the anthrax out-

break of 2016 in Siberia, and we present the analysis of

climatic factors leading to the outbreak. Notably, it was

suggested (Carlson et al. 2019) that a set of climatic factors

causing outbreaks in the cold climates could differ from

that in the warm and dry ones. Based on the present case

study, we identified winter precipitation as an additional

factor, which has not been considered before. However, we

admit lack of replicate examples for anthrax outbreaks in

the cold regions, which is among the limitations of this

study.

Another previous study considering risk factors for

outbreak in high latitudes (Hueffer et al. 2020) admitted

the importance of vaccination and reindeer number but

provided only a limited analysis of climatic factors, focus-

ing on summer temperatures in Salekhard. We performed

an extensive analysis of recent temperature and precipita-

tion and linked it to the dynamics of active layer thickness

characterizing permafrost thawing.

Figure 6. Outline of the connections between climatic factors and anthrax outbreak in the Arctic. Arctic amplification, Arctic oscillation and

sea ice retreat determine temperature dynamics in the Arctic on annual scale. Sea ice retreat introduces an increasing trend into the winter

precipitation dynamics, whereas local weather patterns and extreme events contribute to its variability. Summer precipitation is determined by

the local underlying surface properties, evapotranspiration and convective patterns. Warming climate and winter precipitation dynamics

influence active layer deepening which can trigger anthrax outbreak via revival of old bacteria. Dry summer boosts spread of the disease and

intensifies the outbreak. Vaccination is a preventive measure to control the spread of disease.
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The major hypothesis about the trigger of outbreak is

related to thawing permafrost. There are also questions on

how the outbreak has become so widespread. Given that

ALT was increasing since 2010, bacteria could be released

from permafrost even earlier than in 2016. The ability of

bacteria to undergo the whole life cycle in the soil is a

subject of debate (Hugh-Jones and Blackburn 2009). Re-

cently, earthworms, plants and amoebae have been shown

to interact with B. anthracis, demonstrating a possibility of

bacteria’s life cycle outside the host, although in laboratory

conditions (Carlson et al. 2018). The contaminated areas in

Siberia were considered to be prone to sanitation (Popova

and Kulichenko 2017) due to unfavorable soil environment

and weather conditions that could abrupt the life cycle of

bacteria during an eventual vegetative stage. However, the

situation has changed. Since 1968 when Cherkassky

examined soil probes (Cherkassky 2003), the growing sea-

son (the period with mean daily temperature above 5�C) in

Novy Port has lengthened by almost a month and the mean

temperature of the growing season has increased by 1�C
(Sizov et al. 2021). The climate has become less harsh. In

addition, the current vegetation trends show active green-

ing in Yamal district (Miles and Ezau 2016; Sizov et al.

2021), which could enrich soil with organics. Milder

cooling of soils during two years prior to the outbreak,

together with warmer and longer summers, could create

conditions for bacteria to complete their life cycle by

increasing the amount of spores if those were released from

permafrost earlier than in 2016.

Our analysis points at the importance of the local cli-

matic factors for the outbreak. A combination of climate

factors acting for several years in a row caused a strong

regional effect over a spatial scale of only 100 km. These

scales represent a challenge for the studies based on global

models (Walsh et al. 2018; Carlson et al. 2019) hindering

the use of large-scale models for prognostic purposes. Re-

gional models with higher resolution can therefore be

recommended for the monitoring and forecasts of weather

conditions causing unfavorable epidemiological situations

in cold climates. In addition, mathematical models can be

applied on a local scale (Friedman and Yakubu 2013; Saad-

Roy et al. 2017; Gomez et al. 2018; Stella et al. 2020).

Remarkably, long-term climate dynamics indicated

risks long before the outbreak. In Northwest Siberia, the

mean annual air temperature and snow depth increased by

0.4–0.6�C and 4–10 cm per decade, respectively, during

50–60 years before 2012, while annual precipitation de-

creased by 50–100 mm in 75 years (1936–2010) (Katsov

et al. 2014). Thus, in the absence of vaccination, the dra-

matic consequences could likely be a question of time. The

risk of anthrax outbreaks associated with climate change

was pointed out for East Siberia by Revich and Podolnaya

(2011). A proper information campaign on the importance

of vaccination and prognosis on unfavorable meteorologi-

cal and climatological conditions is essential to prevent

outbreaks in future.

ACKNOWLEDGEMENTS

The study is part of Pan-Eurasian Experiment (PEEX)

program coordinated by University of Helsinki (INAR) for

facilitating international research collaboration in the

boreal region. The work is supported by Academy of

Finland via Flagship funding (Grant No. 337549) and

Belmont Forum project ACRoBEAR (Grant No. 334792),

European Research Council via ATM-GTP (742206). SZ

acknowledges support from the bilateral project ClimEco

(2018-2020) funded by the Academy of Finland: Grant 314

798/799, and Russian Foundation for Basic Research

(RFBR): Grant 18-55-11005 (Univ. Tyumen); and collab-

oration with Russian projects funded by RFBR: Grants 18-

05-60299 and 18-05-6012. SMM and DO were supported

by RFBR (project § 18-05-60037). DO was partly sup-

ported by Moscow State University Grant for Leading

Scientific Schools ‘‘Depository of the Living Systems’’

within MSU Development Program.

FUNDING

Open access funding provided by University of Helsinki

including Helsinki University Central Hospital.

OPEN ACCESS

This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use,

sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to

the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were

made. The images or other third party material in this

article are included in the article’s Creative Commons

licence, unless indicated otherwise in a credit line to the

E. Ezhova et al.



material. If material is not included in the article’s Creative

Commons licence and your intended use is not permitted

by statutory regulation or exceeds the permitted use, you

will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativec

ommons.org/licenses/by/4.0/.

REFERENCES

Arkhangelskaya S (2016) The Siberian Plague. Available: https://
www.rbth.com/longreads/siberian_plague/ [accessed August 7,
2019].

Bobrik AA, Goncharova OY, Matyshak GV, Ryzhova IM, Mos-
kalenko NG, Ponomareva OE, et al. (2015) Correlation of active
layer thickness and landscape parameters of peatland in
Northern West Siberia (Nadym station). Kriosfera Zemli.
XIX(4):29–35

Box J, Colgan WT, Christensen TR, Schmidt NM, Lund M, Par-
mentier FJW, et al. (2019) Key indicators of Arctic climate
change 1971–2017. Environ. Res. Lett. 14:045010

Carlson CJ, Getz WM, Kausrud KL, Cizauskas CA, Blackburn JK,
Bustos Carrillo FA, et al. (2018) Spores and soil from six sides:
interdisciplinarity and the environmental biology of anthrax
(Bacillus anthracis). Biol Rev. 93:1813–1831

Carlson CJ, Kracalik IT, Ross N, Alexander KN, Hugh-Jones ME,
Fegan M, et al. (2019) The global distribution of Bacillus an-
thracis and associated anthrax risk to humans, livestock and
wildlife. Nature Microbiology 4:1337–1343

Cherkasskiy BL (2003) Traveling of an epidemiologist in time and
space. [in Russian] Voronezh. 638 p.

Circumpolar Active Layer Monitoring site. Available: https://ww
w2.gwu.edu/*calm/ [Accessed August 2 2019].

Climate Assessment Database (CADBv2) Global Station Obser-
vation Summaries, Global station normals, https://www.cpc.nce
p.noaa.gov/products/cadb/, [Accessed on July 15, 2021].

Climate Indicators - Arctic Oscillation. Available: https://www.
pmel.noaa.gov/arctic-zone/detect/climate-ao.shtml, [Accessed
on August 10, 2019].

Coghlan A (2016) Child dies in anthrax outbreak linked to thawed
reindeer corpse. New Scientist 3085.

Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Cou-
mou D, et al. (2014) Recent Arctic amplification and extreme
mid-latitude weather. Nature Geosci. 7:627–637

Dragon DC, Rennie RP (1995) The ecology of anthrax spores:
tough but not invincible. Can Vet J. 36:295–301

Driks A (2009) The Bacillus anthracis spore. Molecular Aspects of
Medicine 30:368–373

Frey KE, Smith LC (2003) Recent temperature and precipitation
increases in West Siberia and their association with the Arctic
Oscillation. Polar Research 22(2):287–300

Friedman A, Yakubu AA (2013) Anthrax epizootic and migration:
Persistence or extinction. Mathematical Biosciences 241(1):137–
144

Gainer R (2016) Yamal and anthrax. Can Vet J. 57(9):985–987

Gomez JP, Nekorchuk DM, Mao L, Ryan SJ, Ponciano JM,
Blackburn JK (2018) Decoupling environmental effects and host

population dynamics for anthrax, a classic reservoir-driven
disease. PloS one 13(12):e0208621

Goudarzi S (2016) What lies beneath. Scientific American
315(5):11–12

Hedlund C, Blomstedt Y, Schumann B (2014) Association of
climatic factors with infectious diseases in the Arctic and sub-
arctic region–a systematic review. Global Health Action
7(1):24161

Hugh-Jones M, Blackburn J (2009) The ecology of Bacillus an-
thracis. Molecular Aspects of Medicine 30:356–367

Hueffer K, Drown D, Romanovsky V, et al. (2020) Factors Con-
tributing to Anthrax Outbreaks in the Circumpolar North.
EcoHealth 17:174–180

Jorgenson MT and Kreig RA (1988) A model for mapping per-
mafrost distribution based on landscape component maps and
climatic variables. Senneset, K. (editor), Proceedings of the Fifth
International Conference on Permafrost, Norway, Trondheim.
1: 176–182.

Kangbai J, Momoh E (2017) Anthropogenic climatic change risks
a global anthrax outbreak: A short communication. J Trop Dis
5(244):2

Katsov V, Semenov S, Alekseev G, Ananicheva MD, Anisimov
OA, Ashik IM et al. (2014) Second Roshydromet Assessment
Report on Climate Change and its Consequences in the Russian
Federation, General Summary. Available: https://public.wmo.i
nt/en/media/news-from-members/second-roshydromet-assessm
ent-report-climate-change-and-its-consequences.

Klene AE, Nelson FE, Shiklomanov NI (2001) The n-factor as a
tool in geocryological mapping: seasonal thaw in the Kuparuk
river basin Alaska. Physical Geography 22(6):449–466

Kolonin GV (1969) Nozogeography of anthrax in the USSR in
connection with its landscape epizootiology. Zh Mikrobiol Epi-
dem Immunobiol 46:91–97

Kotlyakov V and Khromova T (2002) Land Resources of Russia –
Maps of Permafrost and Ground Ice, Version 1.
ggd600_permbnd_russia.shp. Boulder, Colorado USA. NSIDC:
National Snow and Ice Data Center [Accessed on August 2,
2019].

Kukkonen IT, Suhonen E, Ezhova E, Lappalainen H, Gennadinik
V, Ponomareva O, Drozdov D (2020) Observations and mod-
elling of ground temperature evolution in the discontinuous
permafrost zone in Nadym, north-west Siberia. Permafrost and
Periglac. Process. 31(2):264–280

Leibman M, Khomutov A, Gubarkov A, Mullanurov A, Dvorni-
kov Y (2015) The research station ‘‘Vaskiny Dachi’’, Central
Yamal, West Siberia, Russia – A review of 25 years of permafrost
studies. Fennia 193(1):3–30

Malkhazova S, Mironova V, Shartova N, Orlov D (2019) Mapping
Russia’s Natural Focal Diseases: History and Contemporary Ap-
proaches, : Springer

Miles VV, Esau I (2016) Spatial heterogeneity of greening and
browning between and within bioclimatic zones in northern
West Siberia. Environ. Res. Lett. 11:115002

Mazhitova GG, Kaverin DA (2007) Thaw depth dynamics and soil
surface subsidence at a Circumpolar Active Layer Monitoring
site, the European north of Russia. Kriosfera Zemli X I(4):20–30

Nelson FE, Outcalt SI (1987) A Computational Method for Pre-
diction and Regionalization of Permafrost. Arctic and Alpine
Research 19(3):279–288

Climatic Factors Influencing the Anthrax Outbreak of 2016 in Siberia, Russia

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.rbth.com/longreads/siberian_plague/
https://www.rbth.com/longreads/siberian_plague/
https://www2.gwu.edu/~calm/
https://www2.gwu.edu/~calm/
https://www.cpc.ncep.noaa.gov/products/cadb/
https://www.cpc.ncep.noaa.gov/products/cadb/
https://www.pmel.noaa.gov/arctic-zone/detect/climate-ao.shtml
https://www.pmel.noaa.gov/arctic-zone/detect/climate-ao.shtml
https://public.wmo.int/en/media/news-from-members/second-roshydromet-assessment-report-climate-change-and-its-consequences
https://public.wmo.int/en/media/news-from-members/second-roshydromet-assessment-report-climate-change-and-its-consequences
https://public.wmo.int/en/media/news-from-members/second-roshydromet-assessment-report-climate-change-and-its-consequences


Obu J, et al. (2019) Northern Hemisphere permafrost map based
on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Science
Reviews 193:299–316

Popova AY, Demina YV, Ezhlova EB, Kulichenko AN, Ryazanova
AG, Maleev VV, et al. (2016) Outbreak of Anthrax in the Ya-
malo-Nenets Autonomous District in 2016. Epidemiological
Peculiarities Problemy Osobo Opasnykh Infektsii [problems of
Particularly Dangerous Infections] 4:42–46

Popova AY and Kulichenko AN (ed.) The experience of elimi-
nation of anthrax in Yamal in 2017, Izhevsk: OOO «Print-2»,
2017. – 313 p. [in Russian] (https://snipchi.ru/updoc/Opit%20
likvidazii%20sib_yazvi%20na%20Yamale%202016.pdf, last ac-
cess 15.01.21)

Revich BA, Podolnaya MA (2011) Thawing of permafrost may
disturb historic cattle burial grounds in East Siberia. Global
Health Action 4(1):8482

Saad-Roy CM, Van den Driessche P, Yakubu AA (2017) A
mathematical model of anthrax transmission in animal popu-
lations. Bulletin of Mathematical Biology 79(2):303–324

Schwartz M (2009) Dr. Jekyll and Mr. Hyde: A short history of
anthrax. Molecular Aspects of Medicine. 30:347–355

Selyaninov YO, Egorova IY, Kolbasov DV, Listishenko AA (2016)
Anthrax in Yamal. Causes of emergence and problems of
diagnostics. Veterinariya 10:3–7

Shamanova II (1970) The influence of snow, vegetation and land
use on the heat properties of soils near Vorkuta. In: Biological
foundations of Northern land use. Komiknigizdat: Syktyvkar,
Komi, pp. 186–195.

Shestakova IV (2016) Anthrax does not forgive mistakes: the
information assessment following the Yamal peninsula outbreak
in the summer of 2016. Journal of Infectology 8(3):5–27

Sizov O, Ezhova E, Tsymbarovich P, Soromotin A, Prihod’ko N,
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