413 research outputs found

    Heat bounds and the blowtorch theorem

    Full text link
    We study driven systems with possible population inversion and we give optimal bounds on the relative occupations in terms of released heat. A precise meaning to Landauer's blowtorch theorem (1975) is obtained stating that nonequilibrium occupations are essentially modified by kinetic effects. Towards very low temperatures we apply a Freidlin-Wentzel type analysis for continuous time Markov jump processes. It leads to a definition of dominant states in terms of both heat and escape rates.Comment: 11 pages; v2: minor changes, 1 reference adde

    Massive Supergravity and Deconstruction

    Full text link
    We present a simple superfield Lagrangian for massive supergravity. It comprises the minimal supergravity Lagrangian with interactions as well as mass terms for the metric superfield and the chiral compensator. This is the natural generalization of the Fierz-Pauli Lagrangian for massive gravity which comprises mass terms for the metric and its trace. We show that the on-shell bosonic and fermionic fields are degenerate and have the appropriate spins: 2, 3/2, 3/2 and 1. We then study this interacting Lagrangian using goldstone superfields. We find that a chiral multiplet of goldstones gets a kinetic term through mixing, just as the scalar goldstone does in the non-supersymmetric case. This produces Planck scale (Mpl) interactions with matter and all the discontinuities and unitarity bounds associated with massive gravity. In particular, the scale of strong coupling is (Mpl m^4)^1/5, where m is the multiplet's mass. Next, we consider applications of massive supergravity to deconstruction. We estimate various quantum effects which generate non-local operators in theory space. As an example, we show that the single massive supergravity multiplet in a 2-site model can serve the function of an extra dimension in anomaly mediation.Comment: 24 pages, 2 figures, some color. Typos fixed and refs added in v

    Mean field effects on the scattered atoms in condensate collisions

    Full text link
    We consider the collision of two Bose Einstein condensates at supersonic velocities and focus on the halo of scattered atoms. This halo is the most important feature for experiments and is also an excellent testing ground for various theoretical approaches. In particular we find that the typical reduced Bogoliubov description, commonly used, is often not accurate in the region of parameters where experiments are performed. Surprisingly, besides the halo pair creation terms, one should take into account the evolving mean field of the remaining condensate and on-condensate pair creation. We present examples where the difference is clearly seen, and where the reduced description still holds.Comment: 6 pages, 4 figure

    Using a normative framework to explore the prototyping of wireless grids

    Get PDF
    The capacity for normative frameworks to capture the essential features of interactions between components in open architectures suggests they might also be of assistance in an early, rapid prototyping phase of system development, helping to refine concepts, identify actors, explore policies and evaluate feasibility. As an exercise to examine this thesis, we investigate the concept of the wireless grid. Wireless grids have been proposed to address the energy issues arising from a new generation of mobile phones, the idea being that local communication with other mobile phones, being cheaper, can be used in combination with network communication to achieve common goals while at the same time extending the battery duty cycle. This results in a social dilemma, as it is advantageous for rational users to benefit from the energy savings without any contribution to the cooperation, as every commitment has its price. We present a necessarily simplified model, whose purpose is to provide us with the foundation to explore issues in the management of such a framework, policies to encourage collaborative behaviour, and the means to evaluate the effects on energy consumption

    Letter of interest for a neutrino beam from Protvino to KM3NeT/ORCA

    Get PDF
    The Protvino accelerator facility located in the Moscow region, Russia, is in a good position to offer a rich experimental research program in the field of neutrino physics. Of particular interest is the possibility to direct a neutrino beam from Protvino towards the KM3NeT/ORCA detector, which is currently under construction in the Mediterranean Sea 40 km offshore Toulon, France. This proposal is known as P2O. Thanks to its baseline of 2595 km, this experiment would yield an unparalleled sensitivity to matter effects in the Earth, allowing for the determination of the neutrino mass ordering with a high level of certainty after only a few years of running at a modest beam intensity of ≈ 90 kW. With a prolonged exposure (≈1500 kWyear), a 2σ sensitivity to the leptonic CP-violating Dirac phase can be achieved. A second stage of the experiment, comprising a further intensity upgrade of the accelerator complex and a densified version of the ORCA detector (Super-ORCA), would allow for up to a 6σ sensitivity to CP violation and a 10Âș−17Âș resolution on the CP phase after 10 years of running with a 450 kW beam, competitive with other planned experiments. The initial composition and energy spectrum of the neutrino beam would need to be monitored by a near detector, to be constructed several hundred meters downstream from the proton beam target. The same neutrino beam and near detector set-up would also allow for neutrino-nucleus cross section measurements to be performed. A short-baseline sterile neutrino search experiment would also be possible
    • 

    corecore