20 research outputs found

    The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing

    Get PDF
    International audienceCurrent sampling of genomic sequence data from eukaryotes is relatively poor, biased, and inadequate to address important questions about their biology, evolution, and ecology; this Community Page describes a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the world's oceans

    Role of MicroRNA-9 in Regulating Adult Neural Stem Cell State

    No full text
    Depuis la dĂ©couverte fondatrice de la prĂ©sence de cellules souches neurales (NSCs) multipotentes dans le cerveau des mammifĂšres adultes, plusieurs Ă©tudes ont rĂ©vĂ©lĂ© l'importance de ces cellules pour le maintien de l'homĂ©ostasie du cerveau. Notamment, des perturbations dans l'Ă©quilibre des NSCs ont Ă©tĂ© associĂ©es au vieillissement et Ă  diverses pathologies neurologiques, ce qui suscite un intĂ©rĂȘt croissant pour ces cellules. Les NSCs rĂ©sident dans des zones germinatives restreintes; dans le rongeur adulte les NSCs sont localisĂ©es principalement dans deux niches neurogĂ©niques bien Ă©tablies dans le tĂ©lencĂ©phale, ce qui contraste avec la situation chez le poisson zĂšbre adulte oĂč des niches de NSCs actives ont Ă©tĂ© identifiĂ©es dans tout le cerveau, y compris dans le tĂ©lencĂ©phale dorsal (pallium). Aussi bien chez les rongeurs que le poisson zĂšbre, les NSCs adultes prĂ©sentent les deux propriĂ©tĂ©s fondamentales des cellules souches: elles sont multipotentes, c’est-Ă -dire capables de gĂ©nĂ©rer de nouveaux neurones et cellules gliales, et ont la capacitĂ© d'auto-renouvellement Ă  long terme, permettant leur maintien au long de la vie adulte. A la diffĂ©rence des progĂ©niteurs neuronaux embryonnaires (NPCs), une caractĂ©ristique de ces NSCs adultes est qu’elles rĂ©sident la plupart du temps dans un Ă©tat d’arrĂȘt rĂ©versible du cycle cellulaire appelĂ© quiescence. Cet Ă©tat, activement maintenu, est censĂ© protĂ©ger la rĂ©serve de NSCs d’un Ă©puisement prĂ©maturĂ©, d’oĂč l'importance de dĂ©chiffrer les mĂ©canismes molĂ©culaires de rĂ©gulation de l’équilibre entre la quiescence et l’activation de ces cellules vers la neurogenĂšse.Les microARNs constituent une classe de petits ARN rĂ©gulateurs, qui jouent un rĂŽle crucial dans le contrĂŽle d’états cellulaires et des transitions entre ces Ă©tats. Ils sont capables de rĂ©agir rapidement Ă  des signaux Ă  la fois intra- et extracellulaires, qui peuvent moduler aussi bien leur niveau d’expression que leur impact fonctionnel, leur donnant ainsi la capacitĂ© de coordonner diverses signaux pour induire des transitions d'Ă©tat cellulaire. Un microARN en particulier, miR-9, a Ă©tĂ© montrĂ© comme jouant un rĂŽle clĂ© et conservĂ© au cours de la neurogenĂšse embryonnaire. L'objectif principal de cette Ă©tude Ă©tait d'Ă©tudier, pour la premiĂšre fois, un rĂŽle potentiel de miR-9 dans le contrĂŽle des NSCs, dans un contexte physiologique dans lequel la majoritĂ© des NSCs sont quiescentes - le pallium adulte du poisson zĂšbre. Nous avons constatĂ© que miR-9 est exclusivement exprimĂ© dans une sous-partie des NSCs, met vraisemblablement en Ă©vidence un « sous-Ă©tat » de quiescence. De plus, nous avons pu montrer que miR-9 ancre les NSCs dans un Ă©tat de quiescence, en partie via le maintien d’un niveau Ă©levĂ© d’activation de la voie de signalisation Notch. De façon surprenante, nous avons Ă©galement identifiĂ© une modification de la localisation subcellulaire de miR-9 au cours du temps: alors que miR-9 est localisĂ© dans le cytoplasme de tous les NPCs chez l’embryon ou le juvenile, chez le poisson adulte miR-9 est localisĂ© dans le noyau des NSCs en quiescence. En outre, la localisation nuclĂ©aire de miR-9 dans ces NSCs quiescentes est fortement corrĂ©lĂ©e avec la localisation nuclĂ©aire des protĂ©ines effectrices des microARNs, les protĂ©ines Argonaute (Agos), ce qui suggĂšre un rĂŽle fonctionnel de miR-9 dans le noyau. De fait, l'Ă©lucidation du mĂ©canisme de transport nuclĂ©o-cytoplasmique de miR-9/Agos nous a permis de manipuler leur localisation, et d’observer un impact de cette localisation sur l’état de quiescence vs activation des NSCs. L’ensemble des rĂ©sultats de cette Ă©tude identifient ainsi miR-9 comme un rĂ©gulateur essentiel de la quiescence des NSCs, fournissent pour la premiĂšre fois un marqueur molĂ©culaire d’un sous-Ă©tat de quiescence spĂ©cifique du cerveau adulte et suggĂšrent l'implication d'un mĂ©canisme inĂ©dit de rĂ©gulation par les microARNs dans le maintien de l'homĂ©ostasie des rĂ©serves de NSCs.Since the seminal discovery of multipotent neural stem cells (NSCs) in the adult mammalian brain, multiple studies have unravelled the importance of these cells for maintaining brain homeostasis. Notably, disturbances in NSC equilibrium have been linked to physiological aging and various neurological pathologies thus sparkling interest in harnessing them for use in regenerative medicine. NSCs reside in distinct germinal zones; in the adult rodent brain NSCs are found mainly in two well-established neurogenic niches in the telencephalon which contrasts with the situation in the adult zebrafish where NSC niches are widespread throughout the brain, including in the dorsal telencephalon or pallium. In both the rodent and zebrafish brains, adult NSCs display fundamental stem cell properties: they are multipotent, e.g. capable of generating new neurons and glia throughout adult life, and have the capacity for long-term self-renewal. Similar to stem cells in other adult tissues, and in contrast to embryonic neural progenitors, a hallmark of these adult NSCs is their relative proliferative quiescence. Quiescence is an actively maintained, reversible state of cell-cycle arrest and generally thought to protect against exhaustion of the stem cell pool. In line with this, disrupting the balance between quiescent and activated NSCs leads to a premature depletion or permanent cell-cycle exit of these cells highlighting the importance of fully deciphering the mechanisms regulating this equilibrium. microRNAs, a major class of small pleiotropic regulatory RNAs, play crucial roles in reinforcing developmental and transitional states. They are capable of reacting to environmental cues, both cell-intrinsic and -extrinsic, with varying outputs such as changing their regulatory functions and expression levels, thus enabling them to coordinating diverse cues to induce cell-state transitions. One microRNA in particular, miR-9, is a highly conserved master regulator of embryonic neurogenesis and in the embryonic zebrafish brain, it establishes a primed neural progenitor state enabling them to quickly respond to cues to differentiate or proliferate. The primary goal of this study was to investigate, for the first time, a potential role for miR-9 in influencing NSC state in a physiological context in which the majority of NSCs are quiescent – the adult zebrafish pallium. We found that miR-9 is exclusively expressed in quiescent NSCs and highlights a “sub-state” within quiescence. In part by maintaining high levels of Notch signalling, a known quiescence promoting pathway, miR-9 anchors NSCs in the quiescent state. Strikingly, we identified a conserved age-associated change in the subcellular localization of the mature miR-9 from the cytoplasm of all embryonic/juvenile neural progenitors to the nucleus of a subset of quiescent NSCs in the adult brain. Moreover, the nuclear expression of miR-9 in these quiescent NSCs is highly correlated with nuclear localization of the microRNAs effector proteins Argonaute (Agos), suggestive of a functional role for nuclear miR-9. Indeed, the elucidation of the nuclear-cytoplasmic transport mechanism of miR-9/Agos enabled us to manipulate their nuclear to cytoplasmic ratios which directly impacted NSC state. Altogether, these results identify miR-9 as a crucial regulator of NSC quiescence, provide for the first time a molecular marker for an age-associated sub-state of quiescence and suggest the involvement of a novel and unconventional microRNA-mediated mechanism to maintain homeostasis of NSC pools

    Gross Findings of Widespread Visceral Metastasis of Prostatic Adenocarcinoma With Neuroendocrine Features: A Case Report

    Get PDF
    Although prostate cancer is common in the western world and is associated with favorable overall survival, neuroendocrine prostate cancer is difficult to detect and is known to aggressively metastasize throughout the body. This subset of disease thus has a poor prognosis, and early detection and treatment of neuroendocrine prostate cancer may increase overall survival. We present a case of a now deceased 63 year old male with extensive epicardial, respiratory, hepato-bilary, adrenal, genitourinary, and osseous tissue metastasis

    Analytical validation of a prognostic prostate cancer gene expression assay using formalin fixed paraffin embedded tissue

    No full text
    Abstract Background There is a clear need for assays that can predict the risk of metastatic prostate cancer following curative procedures. Importantly these assays must be analytically robust in order to provide quality data for important clinical decisions. DNA microarray based gene expression assays measure several analytes simultaneously and can present specific challenges to analytical validation. This study describes the analytical validation of one such assay designed to predict metastatic recurrence in prostate cancer using primary formalin fixed paraffin embedded tumour material. Methods Accuracy was evaluated with a method comparison study between the assay development platform (Prostate Disease Specific Array) and an alternative platform (Xcelℱ microarray) using 50 formalin-fixed, paraffin-embedded prostate cancer patient samples. An additional 70 samples were used to establish the assay reportable range. Determination of assay precision and sensitivity was performed on multiple technical replicates of three prostate cancer samples across multiple variables (operators, days, runs, reagent lots, and equipment) and RNA/cDNA inputs respectively using the appropriate linear mixed model. Results The overall agreement between the development and alternative platform was 94.7% (95% confidence interval, 86.9–98.5%). The reportable range was determined to be 0.150 to 1.107 for core needle biopsy samples and − 0.214 to 0.844 for radical prostatectomy samples. From the precision study, the standard deviations for assay repeatability and reproducibility were 0.032 and 0.040 respectively. The sensitivity study demonstrated that a total RNA input and cDNA input of 50 ng and 3.5 Όg respectively was conservative. Conclusion The Metastatic Assay was found to be highly reproducible and precise. In conclusion the studies demonstrated an acceptable analytical performance for the assay and support its potential use in the clinic
    corecore