23 research outputs found

    Rapid evaluation of the substrate specificity of 3-nitrobenzoic acid dioxygenase MnbAB via colorimetric detection using Saltzman reagent

    No full text
    Nitroaromatic compounds are essential materials for chemical industry, but they are also potentially toxic environmental pollutants. Therefore, their sensitive detection and degradation are important concerns. The microbial degradation pathways of nitroaromatic compounds have been studied in detail, but their usefulness needs to be evaluated to understand their potential applications in bioremediation. Here, we developed a rapid and relatively sensitive assay system to evaluate the activities and substrate specificities of nitroaromatic dioxygenases involved in the oxidative biodegradation of nitroaromatic compounds. In this system, nitrous acid, which was released from the nitroaromatic compounds by the dioxygenases, was detected and quantified using the Saltzman reagent. Escherichia coli producing the 3-nitrobenzoic acid dioxygenase complex MnbAB from Comamonas sp. JS46 clearly showed the apparent substrate specificity of MnbAB as follows. MnbAB accepted not only 3-nitrobenzoic acid but also several other p- and m-nitrobenzoic acid derivatives as substrates, although it much preferred 3-nitrobenzoic acid to others. Furthermore, the presence of a hydroxy or an amino group at the ortho position of the nitro group decreased the activity of MnbAB. In addition, MnbAB accepted 2-(4-nitrophenyl)acetic acid as a substrate, which has one additional methylene group between the aromatic ring and the carboxy group of 3-nitrobenzoic acid. This is the first report about the detailed substrate specificity of MnbAB. Our system can be used for other nitroaromatic dioxygenases and contribute to their characterization

    A semipinacol rearrangement directed by an enzymatic system featuring dual-function FAD-dependent monooxygenase

    No full text
    Nature has invented ingenious ways to biosynthesize biologically active small molecules that have been applied ever since to benefit human life in various ways. During the underlying biosynthetic processes, highly elaborate chemical reactions are often catalyzed by enzymatic systems, thereby enabling transformations under physiological conditions that would require harsh conditions or are hardly possible without enzymatic catalysis. Consequently, understanding novel biochemical transformations is of importance to eventually apply the knowledge gained to generate molecules of interest

    Biosynthesis of methyl-proline containing griselimycins, natural products with anti-tuberculosis activity.

    Get PDF
    Griselimycins (GMs) are depsidecapeptides with superb anti-tuberculosis activity. They contain up to three (2S,4R)-4-methyl-prolines (4-MePro), of which one blocks oxidative degradation and increases metabolic stability in animal models. The natural congener with this substitution is only a minor component in fermentation cultures. We showed that this product can be significantly increased by feeding the reaction with 4-MePro and we investigated the molecular basis of 4-MePro biosynthesis and incorporation. We identified the GM biosynthetic gene cluster as encoding a nonribosomal peptide synthetase and a sub-operon for 4-MePro formation. Using heterologous expression, gene inactivation, and in vitro experiments, we showed that 4-MePro is generated by leucine hydroxylation, oxidation to an aldehyde, and ring closure with subsequent reduction. The crystal structures of the leucine hydroxylase GriE have been determined in complex with substrates and products, providing insight into the stereospecificity of the reaction

    Structural and Biochemical Elucidation of Mechanism for Decarboxylative Condensation of β-Keto Acid by Curcumin Synthase*

    No full text
    The typical reaction catalyzed by type III polyketide synthases (PKSs) is a decarboxylative condensation between acyl-CoA (starter substrate) and malonyl-CoA (extender substrate). In contrast, curcumin synthase 1 (CURS1), which catalyzes curcumin synthesis by condensing feruloyl-CoA with a diketide-CoA, uses a β-keto acid (which is derived from diketide-CoA) as an extender substrate. Here, we determined the crystal structure of CURS1 at 2.32 Å resolution. The overall structure of CURS1 was very similar to the reported structures of type III PKSs and exhibited the αβαβα fold. However, CURS1 had a unique hydrophobic cavity in the CoA-binding tunnel. Replacement of Gly-211 with Phe greatly reduced the enzyme activity. The crystal structure of the G211F mutant (at 2.5 Å resolution) revealed that the side chain of Phe-211 occupied the hydrophobic cavity. Biochemical studies demonstrated that CURS1 catalyzes the decarboxylative condensation of a β-keto acid using a mechanism identical to that for normal decarboxylative condensation of malonyl-CoA by typical type III PKSs. Furthermore, the extender substrate specificity of CURS1 suggested that hydrophobic interaction between CURS1 and a β-keto acid may be important for CURS1 to use an extender substrate lacking the CoA moiety. From these results and a modeling study on substrate binding, we concluded that the hydrophobic cavity is responsible for the hydrophobic interaction between CURS1 and a β-keto acid, and this hydrophobic interaction enables the β-keto acid moiety to access the catalytic center of CURS1 efficiently
    corecore