162 research outputs found

    Rectal Carcinoma with Heterotopic Bone: Report of a Case

    Get PDF
    Heterotopic bone is rarely present in malignant tumors of the gastrointestinal tract. We herein report a case of rectal adenocarcinoma with heterotopic bone. A 46-year-old Japanese male presented to our hospital with abdominal distension and constipation. Colonoscopic examination showed an ulcerated polypoid tumor of the rectum which nearly obstructed the rectal lumen. Abdominal computed tomography showed a tumor of the rectum with calcified deposits. Low anterior resection with lateral lymph node dissection was performed under the tentative diagnosis of rectal cancer. Histological examination of the resected specimen showed mucinous carcinoma of the rectum with heterotopic bone. One of the metastatic lymph nodes dissected also showed heterotopic bone. In the present report, we describe this rare tumor and briefly review the pertinent literature regarding rectal cancer with heterotopic bone

    εˆδ½΅η—‡γ‚’ζœ‰γ™γ‚‹Bεž‹ε€§ε‹•θ„ˆθ§£ι›’γ«ε―Ύγ™γ‚‹γ‚Ήγƒ†γƒ³γƒˆγ‚°γƒ©γƒ•γƒˆε†…ζŒΏθ‘“γ«γŠγ‘γ‚‹θ…Žε‹•θ„ˆγ«ε―Ύγ™γ‚‹ζ²»η™‚ζˆ¦η•₯ : ε€šζ–½θ¨­ε…±εŒη ”η©Ά

    Get PDF
    Background: Management of abdominal branches associated with Stanford type B aortic dissection is controversial without definite criteria for therapy after thoracic endovascular aortic repair (TEVAR). This is in part due to lack of data on natural history related to branch vessels and their relationship with the dissection flap, true lumen, and false lumen. Purpose: To investigate the natural history of abdominal branches after TEVAR for type B aortic dissection and the relationship between renal artery anatomy and renal volume as a surrogate measure of perfusion. Materials and Methods: This study included patients who underwent TEVAR for complicated type B dissection from January 2012 to March 2017 at 20 centers. Abdominal aortic branches were classified with following features: patency, branch vessel origin, and presence of extension of the aortic dissection into a branch (pattern 1, supplied by the true lumen without branch dissection; pattern 2, supplied by the true lumen with branch dissection, etc). The branch artery patterns before TEVAR were compared with those of the last follow-up CT (mean interval, 19.7 months) for spontaneous healing. Patients with one kidney supplied by pattern 1 and the other kidney by a different pattern were identified, and kidney volumes over the course were compared by using a simple linear regression model. Results: Two hundred nine patients (mean age Β± standard deviation, 66 years Β± 13; 165 men and 44 women; median follow-up, 18 months) were included. Four hundred fifty-nine abdominal branches at the last follow-up were evaluable. Spontaneous healing of the dissected branch occurred in 63% (64 of 102) of pattern 2 branches. Regarding the other patterns, 6.5% (six of 93) of branches achieved spontaneous healing. In 79 patients, renal volumes decreased in kidneys with pattern 2 branches with more than 50% stenosis and branches supplied by the aortic false lumen (patterns 3 and 4) compared with contralateral kidneys supplied by pattern 1 (pattern 2 vs pattern 1: βˆ’16% Β± 16 vs 0.10% Β± 11, P = .002; patterns 3 and 4 vs pattern 1: βˆ’13% Β± 14 vs 8.5% Β± 14, P = .004). Conclusion: Spontaneous healing occurs more frequently in dissected branches arising from the true lumen than in other branch patterns. Renal artery branches supplied by the aortic false lumen or a persistently dissected artery with greater than 50% stenosis are associated with significantly greater kidney volume loss.εšε£«οΌˆεŒ»ε­¦οΌ‰γƒ»δΉ™η¬¬1461ε·γƒ»δ»€ε’Œ2εΉ΄6月30ζ—₯Copyright Β© 2019 by authors and RSNA. This work is licensed under the Creative Commons Attribution International License (CC BY-NC-ND 4.0). https://creativecommons.org/licenses/by-nc-nd/4.0/

    Input source and strength influences overall firing phase of model hippocampal CA1 pyramidal cells during theta: Relevance to REM sleep reactivation and memory consolidation

    Full text link
    In simulation studies using a realistic model CA1 pyramidal cell, we accounted for the shift in mean firing phase from theta cycle peaks to theta cycle troughs during rapid-eye movement (REM) sleep reactivation of hippocampal CA1 place cells over several days of growing familiarization with an environment (Brain Res 855:176–180). Changes in the theta drive phase and amplitude between proximal and distal dendritic regions of the cell modulated the theta phase of firing when stimuli were presented at proximal and distal dendritic locations. Stimuli at proximal dendritic sites (proximal to 100 Μm from the soma) invoked firing with a significant phase preference at the depolarizing theta peaks, while distal stimuli (>290 Μm from the soma) invoked firing at hyperpolarizing theta troughs. The input location-related phase preference depended on active dendritic conductances, a sufficient electrotonic separation between input sites and theta-induced subthreshold membrane potential oscillations in the cell. The simulation results predict that the shift in mean theta phase during REM sleep cellular reactivation could occur through potentiation of distal dendritic (temporo-ammonic) synapses and depotentiation of proximal dendritic (Schaffer collateral) synapses over the course of familiarization. Β© 2006 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49532/1/20143_ftp.pd

    CCN3 and bone marrow cells

    Get PDF
    CCN3 expression was observed in a broad variety of tissues from the early stage of development. However, a kind of loss of function in mice (CCN3 del VWC domain -/-) demonstrated mild abnormality, which indicates that CCN3 may not be critical for the normal embryogenesis as a single gene. The importance of CCN3 in bone marrow environment becomes to be recognized by the studies of hematopoietic stem cells and Chronic Myeloid Leukemia cells. CCN3 expression in bone marrow has been denied by several investigations, but we found CCN3 positive stromal and hematopoietic cells at bone extremities with a new antibody although they are a very few populations. We investigated the expression pattern of CCN3 in the cultured bone marrow derived mesenchymal stem cells and found its preference for osteogenic differentiation. From the analyses of in vitro experiment using an osteogenic mesenchymal stem cell line, Kusa-A1, we found that CCN3 downregulates osteogenesis by two different pathways; suppression of BMP and stimulation of Notch. Secreted CCN3 from Kusa cells inhibited the differentiation of osteoblasts in separate culture, which indicates the paracrine manner of CCN3 activity. CCN3 may also affect the extracellular environment of the niche for hematopoietic stem cells

    Tetrodotoxin as a Tool to Elucidate Sensory Transduction Mechanisms: The Case for the Arterial Chemoreceptors of the Carotid Body

    Get PDF
    Carotid bodies (CBs) are secondary sensory receptors in which the sensing elements, chemoreceptor cells, are activated by decreases in arterial PO2 (hypoxic hypoxia). Upon activation, chemoreceptor cells (also known as Type I and glomus cells) increase their rate of release of neurotransmitters that drive the sensory activity in the carotid sinus nerve (CSN) which ends in the brain stem where reflex responses are coordinated. When challenged with hypoxic hypoxia, the physiopathologically most relevant stimulus to the CBs, they are activated and initiate ventilatory and cardiocirculatory reflexes. Reflex increase in minute volume ventilation promotes CO2 removal from alveoli and a decrease in alveolar PCO2 ensues. Reduced alveolar PCO2 makes possible alveolar and arterial PO2 to increase minimizing the intensity of hypoxia. The ventilatory effect, in conjunction the cardiocirculatory components of the CB chemoreflex, tend to maintain an adequate supply of oxygen to the tissues. The CB has been the focus of attention since the discovery of its nature as a sensory organ by de Castro (1928) and the discovery of its function as the origin of ventilatory reflexes by Heymans group (1930). A great deal of effort has been focused on the study of the mechanisms involved in O2 detection. This review is devoted to this topic, mechanisms of oxygen sensing. Starting from a summary of the main theories evolving through the years, we will emphasize the nature and significance of the findings obtained with veratridine and tetrodotoxin (TTX) in the genesis of current models of O2-sensing

    Hypothalamic 2-Arachidonoylglycerol Regulates Multistage Process of High-Fat Diet Preferences

    Get PDF
    In this study, we examined alterations in the hypothalamic reward system related to high-fat diet (HFD) preferences. We previously reported that hypothalamic 2-arachidonoylglycerol (2-AG) and glial fibrillary acid protein (GFAP) were increased after conditioning to the rewarding properties of a HFD. Here, we hypothesized that increased 2-AG influences the hypothalamic reward system.The conditioned place preference test (CPP test) was used to evaluate HFD preferences. Hypothalamic 2-AG was quantified by gas chromatography-mass spectrometry. The expression of GFAP was examined by immunostaining and western blotting.Consumption of a HFD over either 3 or 7 days increased HFD preferences and transiently increased hypothalamic 2-AG levels. HFD consumption over 14 days similarly increased HFD preferences but elicited a long-lasting increase in hypothalamic 2-AG and GFAP levels. The cannabinoid 1 receptor antagonist O-2050 reduced preferences for HFDs after 3, 7, or 14 days of HFD consumption and reduced expression of GFAP after 14 days of HFD consumption. The astrocyte metabolic inhibitor Fluorocitrate blocked HFD preferences after 14 days of HFD consumption.High levels of 2-AG appear to induce HFD preferences, and activate hypothalamic astrocytes via the cannabinoid system. We propose that there may be two distinct stages in the development of HFD preferences. The induction stage involves a transient increase in 2-AG, whereas the maintenance stage involves a long lasting increase in 2-AG levels and activation of astrocytes. Accordingly, hypothalamic 2-AG may influence the development of HFD preferences

    Feasibility Studies of EMTP Simulation for the Design of the Pulsed-Power Generator Using MPC and BPFN for Water Treatments

    Get PDF
    In this paper, a pulsed-power generator that consists of a magnetic pulse compressor (MPC) and a Blumlein-type pulse forming network (BPFN) has been developed. The pulsed-power generator can be operated with high repetition rate, long lifetime, and high reliability for water treatments such as sterilization of microorganisms, decomposition of harmful materials, and ozone generation. An informative explanation about the simulation methodology using electromagnetic transient program was presented in order to give guidance for more efficient design of the pulsed-power generator with MPC and BPFN. The comparison study of the simulation result with the experimental result was carried out. As a result, it was found that the simulation results and the experimental results with the manufactured MPC and BPFN showed a reasonable agreement. In addition, a large volume of streamer discharge was successfully generated in water with the developed system

    CCN3 modulates bone turnover and is a novel regulator of skeletal metastasis

    Get PDF
    The CCN family of proteins is composed of six secreted proteins (CCN1-6), which are grouped together based on their structural similarity. These matricellular proteins are involved in a large spectrum of biological processes, ranging from development to disease. In this review, we focus on CCN3, a founding member of this family, and its role in regulating cells within the bone microenvironment. CCN3 impairs normal osteoblast differentiation through multiple mechanisms, which include the neutralization of pro-osteoblastogenic stimuli such as BMP and Wnt family signals or the activation of pathways that suppress osteoblastogenesis, such as Notch. In contrast, CCN3 is known to promote chondrocyte differentiation. Given these functions, it is not surprising that CCN3 has been implicated in the progression of primary bone cancers such as osteosarcoma, Ewing’s sarcoma and chondrosarcoma. More recently, emerging evidence suggests that CCN3 may also influence the ability of metastatic cancers to colonize and grow in bone

    Electron Temperature and Electron Density of Underwater Pulsed Discharge Plasma Produced by Solid-State Pulsed-Power Generator

    Get PDF
    A pulsed discharge produced underwater has been an attractive method to treat waste water. For the optimization and realization of the water treatment system utilizing underwater pulsed discharge, modeling analysis could be one of the essential works. However, there is still no simulation work about the underwater pulsed discharge due to the lack of knowledge about its characteristic parameters such as electron temperature, electron density, and so on. In this paper, the temperature and the electron density in a pulsed discharge plasma produced underwater are measured and presented. A magnetic pulse compressor (MPC) was developed and used to create the electrical discharge in water. The developed MPC is all-solid state and is, therefore, a maintenance-free generator. To define the temperature and the electron density in an underwater pulsed discharge plasma, two kinds of spectroscopic measurements, called the line-pair method and Stark broadening, were carried out. According to the experimental results, the temperature and the electron density in the pulsed discharge plasma between point-plane electrodes immersed in water are determined to be 15 000 K and 1018/hboxcm310^{18}/ hbox{cm}^{3}, respectively
    • …
    corecore