78 research outputs found
Anti-androgens act jointly in suppressing spiggin concentrations in androgen-primed female three-spined sticklebacks - Prediction of combined effects by concentration addition
This is the post-print version of the final paper published in Aquatic Toxicology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Increasing attention is being directed at the role played by anti-androgenic chemicals in endocrine disruption of wildlife within the aquatic environment. The co-occurrence of multiple contaminants with anti-androgenic activity highlights a need for the predictive assessment of combined effects, but information about anti-androgen mixture effects on wildlife is lacking. This study evaluated the suitability of the androgenised female stickleback screen (AFSS), in which inhibition of androgen-induced spiggin production provides a quantitative assessment of anti-androgenic activity, for predicting the effect of a four component mixture of anti-androgens. The anti-androgenic activity of four known anti-androgens (vinclozolin, fenitrothion, flutamide, linuron) was evaluated from individual concentration-response data and used to design a mixture containing each chemical at equipotent concentrations. Across a 100-fold concentration range, a concentration addition approach was used to predict the response of fish to the mixture. Two studies were conducted independently at each of two laboratories. By using a novel method to adjust for differences between nominal and measured concentrations, good agreement was obtained between the actual outcome of the mixture exposure and the predicted outcome. This demonstrated for the first time that androgen receptor antagonists act in concert in an additive fashion in fish and that existing mixture methodology is effective in predicting the outcome, based on concentration-response data for individual chemicals. The sensitivity range of the AFSS assay lies within the range of anti-androgenicity reported in rivers across many locations internationally. The approach taken in our study lays the foundations for understanding how androgen receptor antagonists work together in fish and is essential in informing risk assessment methods for complex anti-androgenic mixtures in the aquatic environment.European Commission and
Natural Environment Research Council
Sublethal exposure to copper supresses the ability to acclimate to hypoxia in a model fish species
This is the final version. Available on open access from Elsevier via the DOI in this recordHypoxia is one of the major threats to biodiversity in aquatic systems. The association of hypoxia with nutrient-rich effluent input into aquatic systems results in scenarios where hypoxic waters could be contaminated with a wide range of chemicals, including metals. Despite this, little is known about the ability of fish to respond to hypoxia when exposures occur in the presence of environmental toxicants. We address this knowledge gap by investigating the effects of exposures to different levels of oxygen in the presence or absence of copper using the three-spined sticklebacks (Gasterosteus aculeatus) model. Fish were exposed to different air saturations (AS; 100%, 75% and 50%) in combination with copper (20 μg/L) over a 4 day period. The critical oxygen level (Pcrit), an indicator of acute hypoxia tolerance, was 54.64 ± 2.51% AS under control conditions, and 36.21 ± 2.14% when fish were chronically exposed to hypoxia (50% AS) for 4 days, revealing the ability of fish to acclimate to low oxygen conditions. Importantly, the additional exposure to copper (20 μg/L) prevented this improvement in Pcrit, impairing hypoxia acclimation. In addition, an increase in ventilation rate was observed for combined copper and hypoxia exposure, compared to the single stressors or the controls. Interestingly, in the groups exposed to copper, a large increase in variation in the measured Pcrit was observed between individuals, both under normoxic and hypoxic conditions. This variation, if observed in wild populations, may lead to selection for a tolerant phenotype and alterations in the gene pool of the populations, with consequences for their sustainability. Our findings provide strong evidence that copper reduces the capacity of fish to respond to hypoxia by preventing acclimation and will inform predictions of the consequences of global increases of hypoxia in water systems affected by other pollutants worldwide.University of ExeterCentre for Environment Fisheries and Aquaculture Science (Cefas)Biotechnology and Biological Sciences Research Council (BBSRC)ONICYT-FONDECY
Hypoxia modifies the response to flutamide and linuron in male three-spined stickleback (Gasterosteus aculeatus)
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordHypoxia is a major stressor in aquatic environments and it is frequently linked with excess nutrients resulting from sewage effluent discharges and agricultural runoff, which often also contain complex mixtures of chemicals. Despite this, interactions between hypoxia and chemical toxicity are poorly understood. We exposed male three-spined stickleback during the onset of sexual maturation to a model anti-androgen (flutamide; 250μg/L) and a pesticide with anti-androgenic activity (linuron; 250μg/L), under either 97% or 56% air saturation (AS). We assessed the effects of each chemical, alone and in combination with reduced oxygen concentration, by measuring the transcription of spiggin in the kidney, as a marker of androgen signalling, and 11 genes in the liver involved in some of the molecular pathways hypothesised to be affected by the exposures. Spiggin transcription was strongly inhibited by flutamide under both AS conditions. In contrast, for linuron, a strong inhibition of spiggin was observed under 97% AS, but this effect was supressed under reduced air saturation, likely due to interactions between the hypoxia inducible factor and the aryl hydrocarbon receptor (AhR) pathways. In the liver, hypoxia inducible factor 1α was induced following exposure to both flutamide and linuron, however this was independent of the level of air saturation. This work illustrates the potential for interactions between hypoxia and pollutants with endocrine or AhR agonist activity to occur, with implications for risk assessment and management.Centre for Environment, Fisheries and Aquaculture Scienc
Recommended from our members
Skin swabbing is a refined technique to collect DNA from model fish species
Model fish species such as sticklebacks and zebrafish are frequently used in studies that require DNA to be collected from live animals. This is typically achieved by fin clipping, a procedure that is simple and reliable to perform but that can harm fish. An alternative procedure to sample DNA involves swabbing the skin to collect mucus and epithelial cells. Although swabbing appears to be less invasive than fin clipping, it still requires fish to be netted, held in air and handled—procedures that can cause stress. In this study we combine behavioural and physiological analyses to investigate changes in gene expression, behaviour and welfare after fin clipping and swabbing. Swabbing led to a smaller change in cortisol release and behaviour on the first day of analysis compared to fin clipping. It also led to less variability in data suggesting that fewer animals need to be measured after using this technique. However, swabbing triggered some longer term changes in zebrafish behaviour suggesting a delayed response to sample collection. Skin swabbing does not require the use of anaesthetics and triggers fewer changes in behaviour and physiology than fin clipping. It is therefore a more refined technique for DNA collection with the potential to improve fish health and welfare
Knowledge Hub on the Integrated Assessment of Chemical Contaminants and their Effects on the Marine Environment
In a time of environmental awareness, spurred on by the possibility that our world is threatened by climate change, it is important to remember that there are other anthropogenic pressures, which are also essential for addressing the protection of the marine and coastal environment. Pollution is a global, complex issue that contributes to biodiversity loss and poor environmental health and comes from the production and release of many of the synthetic chemicals that we use in our daily lives. Chemical contaminants are often underrepresented as a major contributor of environmental deterioration.
The Joint Programming Initiative Healthy and Productive Seas and Oceans (JPI Oceans) established in 2018 the JPI Oceans Knowledge Hub on the integrated assessment
of chemical contaminants and their effects on the marine environment. The purpose of the Knowledge Hub was to provide recommendations on how to improve the methodological basis for marine chemical status assessment.
The work has resulted in the following policy paper which focuses on improving the efficiency and implementation of integrated assessment methodology of effects of chemicals of emerging concern. Substantial additional knowledge of biological effects is needed to achieve Good Environmental Status (GES) of our oceans and coastal areas. The Knowledge Hub is represented by highly skilled scientists and policy makers, appointed by the JPI Oceans Management Board, to ensure that the recommendations provided are useful for policy making
Directional genetic selection by pulp mill effluent on multiple natural populations of three-spined stickleback (Gasterosteus aculeatus)
Contamination can cause a rapid environmental change which may require populations to respond with evolutionary changes. To evaluate the effects of pulp mill effluents on population genetics, we sampled three-spined sticklebacks (Gasterosteus aculeatus) near four pulp mills and four adjacent reference sites and analyzed Amplified Fragment Length Polymorphism (AFLP) to compare genetic variability. A fine scale genetic structure was detected and samples from polluted sites separated from reference sites in multidimensional scaling plots (P < 0.005, 1000 permutations) and locus-by-locus Analysis of Molecular Variance (AMOVA) further confirmed that habitats are significantly separated (FST = 0.021, P < 0.01, 1023 permutations). The amount of genetic variation between populations did not differ between habitats, and populations from both habitats had similar levels of heterozygosity (polluted sites Nei’s Hs = 0.11, reference sites Nei’s Hs = 0.11). Still, pairwise FST: s between three, out of four, pairs of polluted-reference sites were significant. A FST-outlier analysis showed that 21 (8.4%) loci were statistically different from a neutral distribution at the P < 0.05 level and therefore indicated to be under divergent selection. When removing 13 FST-outlier loci, significant at the P < 0.01 level, differentiation between habitats disappeared in a multidimensional scaling plot. In conclusion, pulp mill effluence has acted as a selective agent on natural populations of G. aculeatus, causing a convergence in genotype composition change at multiple sites in an open environment
Divergence in Sex Steroid Hormone Signaling between Sympatric Species of Japanese Threespine Stickleback
Sex steroids mediate the expression of sexually dimorphic or sex-specific traits that are important both for mate choice within species and for behavioral isolation between species. We investigated divergence in sex steroid signaling between two sympatric species of threespine stickleback (Gasterosteus aculeatus): the Japan Sea form and the Pacific Ocean form. These sympatric forms diverge in both male display traits and female mate choice behaviors, which together contribute to asymmetric behavioral isolation in sympatry. Here, we found that plasma levels of testosterone and 17β-estradiol differed between spawning females of the two sympatric forms. Transcript levels of follicle-stimulating hormone-β (FSHβ) gene were also higher in the pituitary gland of spawning Japan Sea females than in the pituitary gland of spawning Pacific Ocean females. By contrast, none of the sex steroids examined were significantly different between nesting males of the two forms. However, combining the plasma sex steroid data with testis transcriptome data suggested that the efficiency of the conversion of testosterone into 11-ketotestosterone has likely diverged between forms. Within forms, plasma testosterone levels in males were significantly correlated with male body size, a trait important for female mate choice in the two sympatric species. These results demonstrate that substantial divergence in sex steroid signaling can occur between incipient sympatric species. We suggest that investigation of the genetic and ecological mechanisms underlying divergence in hormonal signaling between incipient sympatric species will provide a better understanding of the mechanisms of speciation in animals
Towards a System Level Understanding of Non-Model Organisms Sampled from the Environment: A Network Biology Approach
The acquisition and analysis of datasets including multi-level omics and physiology from non-model species, sampled from field populations, is a formidable challenge, which so far has prevented the application of systems biology approaches. If successful, these could contribute enormously to improving our understanding of how populations of living organisms adapt to environmental stressors relating to, for example, pollution and climate. Here we describe the first application of a network inference approach integrating transcriptional, metabolic and phenotypic information representative of wild populations of the European flounder fish, sampled at seven estuarine locations in northern Europe with different degrees and profiles of chemical contaminants. We identified network modules, whose activity was predictive of environmental exposure and represented a link between molecular and morphometric indices. These sub-networks represented both known and candidate novel adverse outcome pathways representative of several aspects of human liver pathophysiology such as liver hyperplasia, fibrosis, and hepatocellular carcinoma. At the molecular level these pathways were linked to TNF alpha, TGF beta, PDGF, AGT and VEGF signalling. More generally, this pioneering study has important implications as it can be applied to model molecular mechanisms of compensatory adaptation to a wide range of scenarios in wild populations
Dying for change: A roadmap to refine the fish acute toxicity test after 40 years of applying a lethal endpoint
The fish acute toxicity test (TG203; OECD, 2019) is frequently used and highly embedded in hazard and risk assessment globally. The test estimates the concentration of a chemical that kills 50% of the fish (LC50) over a 96 h exposure and is considered one of the most severe scientific procedures undertaken. Over the years, discussions at the Organisation for Economic Co-operation and Development (OECD) have resulted in changes to the test which reduce the number of fish used, as well as the development of a (potential) replacement test (TG236, OECD, 2013). However, refinement of the mortality endpoint with an earlier (moribundity) endpoint was not considered feasible during the Test Guideline’s (TG) last update in 2019. Several stakeholders met at a UK-based workshop to discuss how TG203 can be refined, and identified two key opportunities to reduce fish suffering: (1) application of clinical signs that predict mortality and (2) shortening the test duration. However, several aspects need to be addressed before these refinements can be adopted. TG203 has required recording of major categories of sublethal clinical signs since its conception, with the option to record more detailed signs introduced in the 2019 update. However, in the absence of guidance, differences in identification, recording and reporting of clinical signs between technicians and laboratories is likely to have generated piecemeal data of varying quality. Harmonisation of reporting templates, and training in clinical sign recognition and recording are needed to standardise clinical sign data. This is critical to enable robust data-driven detection of clinical signs that predict mortality. Discussions suggested that the 96 h duration of TG203 cannot stand up to scientific scrutiny. Feedback and data from UK contract research organisations (CROs) conducting the test were that a substantial proportion of mortalities occur in the first 24 h. Refinement of TG203 by shortening the test duration would reduce suffering (and test failure rate) but requires a mechanism to correct new results to previous 96 h LC50 data. The actions needed to implement both refinement opportunities are summarised here within a roadmap. A shift in regulatory assessment, where the 96 h LC50 is a familiar base for decisions, will also be critical
Physical and chemical attributes of cod roe
SIGLEAvailable from British Library Document Supply Centre-DSC:DXN014825 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
- …