29 research outputs found

    ELECTROCHEMICAL BEHAVIOR OF XANTHENE FOOD DYE ERYTHROSINE AT GLASSY CARBON ELECTRODE AND ITS ANALYTICAL APPLICATIONS

    Get PDF
    Erythrosine is a xanthene food dye used in the food industries to enhance the appearance of the food. The electrochemical behavior of erythrosine at glassy carbon electrode was investigated by cyclic and differential pulse voltammetry. The oxidation peak of erythrosine was observed in phosphate buffer of pH 5.0. The influence of different pH, scan rate and concentration were evaluated. The probable reaction mechanism involved in the oxidation of erythrosine was also proposed. Differential pulse voltammetric method with good precision and accuracy was developed for the determination of erythrosine dye in real samples. The peak currents were found to be linearly dependent on the concentration range of 1 x 10-5 to 6 x 10-4 M. The limit of detection (LOD) and limit of quantification (LOQ) were noticed to be 1.9 x 10-7 and 6.6 x 10-7 M respectively

    Interaction of Bioactive Coomassie Brilliant Blue G with Protein: Insights from Spectroscopic Methods

    Get PDF
    The binding of coomassie brilliant blue G (CBB) to bovine serum albumin (BSA) was investigated under simulative physiological conditions employing different optical spectroscopic techniques viz., fluorescence emission, UV–visible absorption and FTIR. Fluorescence quenching data obtained at different temperatures suggested the presence of dynamic type of quenching mechanism. The binding constant of CBB-BSA and the number of binding sites (n) for CBB in BSA were calculated and found to be 4.20 × 104 M−1 and 0.96 respectively, at 302 K. The value of n close to unity indicated that the protein has a single class of binding sites for CBB. The thermodynamic parameters revealed that the hydrophobic forces played a major role in the interaction of CBB to BSA. The distance between the CBB and protein was calculated using the theory of Föster’s Resonance Energy Transfer (FRET). The conformational change in the secondary structure of BSA upon interaction with dye was investigated by synchronous fluorescence and FTIR techniques. Competitive binding studies were also carried out to know the location of binding of CBB on BSA

    Recollection of endemic species Barleria stocksii T. Anderson (Acanthaceae) in Karnataka State, India, after 140 years

    Get PDF
    Barleria stocksii T. Anderson (Acanthaceae) is recollected from Kappat hills, Gadag district, Karnataka, after a gap of more than 140 year. A detailed description and photographs are provided

    Stereodifferentiation in the intramolecular singlet excited state quenching of hydroxybiphenyl-tryptophan dyads

    Get PDF
    The photochemical processes occurring in diastereomeric dyads (S, S)-1 and (S, R)-1, prepared by conjugation of (S)-2-(2-hydroxy-1,1'-biphenyl-4-yl) propanoic acid ((S)-BPOH) with (S)- and (R)-Trp, have been investigated. In acetonitrile, the fluorescence spectra of (S, S)-1 and (S, R)-1 were coincident in shape and position with that of (S)-BPOH, although they revealed a markedly stereoselective quenching. Since singlet energy transfer from BPOH to Trp is forbidden (5 kcal mol(-1) uphill), the quenching was attributed to thermodynamically favoured (according to Rehm-Weller) electron transfer or exciplex formation. Upon addition of 20% water, the fluorescence quantum yield of (S)-BPOH decreased, while only minor changes were observed for the dyads. This can be explained by an enhancement of the excited state acidity of (S)-BPOH, associated with bridging of the carboxy and hydroxy groups by water, in agreement with the presence of water molecules in the X-ray structure of (S)-BPOH. When the carboxy group was not available for coordination with water, as in the methyl ester (S)-BPOHMe or in the dyads, this effect was prevented; accordingly, the fluorescence quantum yields did not depend on the presence or absence of water. The fluorescence lifetimes in dry acetonitrile were 1.67, 0.95 and 0.46 ns for (S)-BPOH, (S, S)-1 and (S, R)-1, respectively, indicating that the observed quenching is indeed dynamic. In line with the steady-state and time-resolved observations, molecular modelling pointed to a more favourable geometric arrangement of the two interacting chromophores in (S, R)-1. Interestingly, this dyad exhibited a folded conformation in the solid state.Financial support from the Spanish Government (CTQ2010-14882, BES-2008-003314, JCI-2011-09926, PR2011-0581), from the Generalitat Valenciana (Prometeo 2008/090) and from the Universitat Politecnica de Valencia (PAID 05-11, 2766) is gratefully acknowledged.BonancĂ­a Roca, P.; VayĂĄ PĂ©rez, I.; Markovitsi, D.; Gustavsson, T.; JimĂ©nez Molero, MC.; Miranda Alonso, MÁ. (2013). Stereodifferentiation in the intramolecular singlet excited state quenching of hydroxybiphenyl-tryptophan dyads. Organic and Biomolecular Chemistry. 11(12):1958-1963. https://doi.org/10.1039/c3ob27278hS195819631112JimĂ©nez, M. C., Pischel, U., & Miranda, M. A. (2007). Photoinduced processes in naproxen-based chiral dyads. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 8(3), 128-142. doi:10.1016/j.jphotochemrev.2007.10.001Abad, S., Pischel, U., & Miranda, M. A. (2005). Wavelength-Dependent Stereodifferentiation in the Fluorescence Quenching of Asymmetric Naphthalene-Based Dyads by Amines. The Journal of Physical Chemistry A, 109(12), 2711-2717. doi:10.1021/jp047996aAbad, S., VayĂĄ, I., JimĂ©nez, M. C., Pischel, U., & Miranda, M. A. (2006). Diastereodifferentiation of Novel Naphthalene Dyads by Fluorescence Quenching and Excimer Formation. ChemPhysChem, 7(10), 2175-2183. doi:10.1002/cphc.200600337BonancĂ­a, P., VayĂĄ, I., Climent, M. J., Gustavsson, T., Markovitsi, D., JimĂ©nez, M. C., & Miranda, M. A. (2012). Excited-State Interactions in Diastereomeric Flurbiprofen–Thymine Dyads. The Journal of Physical Chemistry A, 116(35), 8807-8814. doi:10.1021/jp3063838Paris, C., Encinas, S., Belmadoui, N., Climent, M. J., & Miranda, M. A. (2008). Photogeneration of 2-Deoxyribonolactone in Benzophenone−Purine Dyads. Formation of Ketyl−C1â€Č Biradicals. Organic Letters, 10(20), 4409-4412. doi:10.1021/ol801514vBelmadoui, N., Encinas, S., Climent, M. J., Gil, S., & Miranda, M. A. (2006). Intramolecular Interactions in the Triplet Excited States of Benzophenone–Thymine Dyads. Chemistry - A European Journal, 12(2), 553-561. doi:10.1002/chem.200500345Lhiaubet-Vallet, V., BoscĂĄ, F., & Miranda, M. A. (2007). Stereodifferentiating Drug−Biomolecule Interactions in the Triplet Excited State:  Studies on Supramolecular Carprofen/Protein Systems and on Carprofen−Tryptophan Model Dyads. The Journal of Physical Chemistry B, 111(2), 423-431. doi:10.1021/jp066968kVayĂĄ, I., PĂ©rez-Ruiz, R., Lhiaubet-Vallet, V., JimĂ©nez, M. C., & Miranda, M. A. (2010). Drug–protein interactions assessed by fluorescence measurements in the real complexes and in model dyads. Chemical Physics Letters, 486(4-6), 147-153. doi:10.1016/j.cplett.2009.12.091Seedher, N., & Bhatia, S. (2005). Mechanism of interaction of the non-steroidal antiinflammatory drugs meloxicam and nimesulide with serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 39(1-2), 257-262. doi:10.1016/j.jpba.2005.02.031SEEDHER, N., & BHATIA, S. (2006). Reversible binding of celecoxib and valdecoxib with human serum albumin using fluorescence spectroscopic technique. Pharmacological Research, 54(2), 77-84. doi:10.1016/j.phrs.2006.02.008Nanda, R. K., Sarkar, N., & Banerjee, R. (2007). Probing the interaction of ellagic acid with human serum albumin: A fluorescence spectroscopic study. Journal of Photochemistry and Photobiology A: Chemistry, 192(2-3), 152-158. doi:10.1016/j.jphotochem.2007.05.018Zhou, B., Li, R., Zhang, Y., & Liu, Y. (2008). Kinetic analysis of the interaction between amphotericin B and human serum albumin using surface plasmon resonance and fluorescence spectroscopy. Photochemical & Photobiological Sciences, 7(4), 453. doi:10.1039/b717897bVahedian-Movahed, H., Saberi, M. R., & Chamani, J. (2011). Comparison of Binding Interactions of Lomefloxacin to Serum Albumin and Serum Transferrin by Resonance Light Scattering and Fluorescence Quenching Methods. Journal of Biomolecular Structure and Dynamics, 28(4), 483-502. doi:10.1080/07391102.2011.10508590Katrahalli, U., Kalalbandi, V. K. A., & Jaldappagari, S. (2012). The effect of anti-tubercular drug, ethionamide on the secondary structure of serum albumins: A biophysical study. Journal of Pharmaceutical and Biomedical Analysis, 59, 102-108. doi:10.1016/j.jpba.2011.09.013El-Kemary, M., Gil, M., & Douhal, A. (2007). Relaxation Dynamics of Piroxicam Structures within Human Serum Albumin Protein. Journal of Medicinal Chemistry, 50(12), 2896-2902. doi:10.1021/jm061421fTormo, L., Organero, J. A., Cohen, B., Martin, C., Santos, L., & Douhal, A. (2008). Dynamical and Structural Changes of an Anesthetic Analogue in Chemical and Biological Nanocavities. The Journal of Physical Chemistry B, 112(43), 13641-13647. doi:10.1021/jp803083yTardioli, S., Lammers, I., Hooijschuur, J.-H., Ariese, F., van der Zwan, G., & Gooijer, C. (2012). Complementary Fluorescence and Phosphorescence Study of the Interaction of Brompheniramine with Human Serum Albumin. The Journal of Physical Chemistry B, 116(24), 7033-7039. doi:10.1021/jp300055cVayĂĄ, I., JimĂ©nez, M. C., & Miranda, M. A. (2007). Excited-State Interactions in Flurbiprofen−Tryptophan Dyads. The Journal of Physical Chemistry B, 111(31), 9363-9371. doi:10.1021/jp071301zCallis, P. R., & Burgess, B. K. (1997). Tryptophan Fluorescence Shifts in Proteins from Hybrid Simulations:  An Electrostatic Approach. The Journal of Physical Chemistry B, 101(46), 9429-9432. doi:10.1021/jp972436fLakowicz, J. R. (2000). On Spectral Relaxation in Proteins†¶‖. Photochemistry and Photobiology, 72(4), 421. doi:10.1562/0031-8655(2000)0722.0.co;2Schuler, B., & Eaton, W. A. (2008). Protein folding studied by single-molecule FRET. Current Opinion in Structural Biology, 18(1), 16-26. doi:10.1016/j.sbi.2007.12.003Shen, X., & Knutson, J. R. (2001). Subpicosecond Fluorescence Spectra of Tryptophan in Water. The Journal of Physical Chemistry B, 105(26), 6260-6265. doi:10.1021/jp010384vBeechem, J. M., & Brand, L. (1985). Time-Resolved Fluorescence of Proteins. Annual Review of Biochemistry, 54(1), 43-71. doi:10.1146/annurev.bi.54.070185.000355Callis, P. R. (1997). [7] 1La and 1Lb transitions of tryptophan: Applications of theory and experimental observations to fluorescence of proteins. Flourescence Spectroscopy, 113-150. doi:10.1016/s0076-6879(97)78009-1Basarić, N., & Wan, P. (2006). Competing Excited State Intramolecular Proton Transfer Pathways from Phenol to Anthracene Moieties. The Journal of Organic Chemistry, 71(7), 2677-2686. doi:10.1021/jo0524728Lukeman, M., & Wan, P. (2003). Excited-State Intramolecular Proton Transfer ino-Hydroxybiaryls:  A New Route to Dihydroaromatic Compounds. Journal of the American Chemical Society, 125(5), 1164-1165. doi:10.1021/ja029376yKeck, J., Kramer, H. E. A., Port, H., Hirsch, T., Fischer, P., & Rytz, G. (1996). Investigations on Polymeric and Monomeric Intramolecularly Hydrogen-Bridged UV Absorbers of the Benzotriazole and Triazine Class. The Journal of Physical Chemistry, 100(34), 14468-14475. doi:10.1021/jp961081hVollmer, F., & Rettig, W. (1996). Fluorescence loss mechanism due to large-amplitude motions in derivatives of 2,2â€Č-bipyridyl exhibiting excited-state intramolecular proton transfer and perspectives of luminescence solar concentrators. Journal of Photochemistry and Photobiology A: Chemistry, 95(2), 143-155. doi:10.1016/1010-6030(95)04252-0Lukeman, M., & Wan, P. (2002). A New Type of Excited-State Intramolecular Proton Transfer:  Proton Transfer from Phenol OH to a Carbon Atom of an Aromatic Ring Observed for 2-Phenylphenol1. Journal of the American Chemical Society, 124(32), 9458-9464. doi:10.1021/ja0267831JimĂ©nez, M. C., Miranda, M. A., Tormos, R., & VayĂĄ, I. (2004). Characterisation of the lowest singlet and triplet excited states of S-flurbiprofen. Photochem. Photobiol. Sci., 3(11-12), 1038-1041. doi:10.1039/b408530bWeller, A. (1982). Photoinduced Electron Transfer in Solution: Exciplex and Radical Ion Pair Formation Free Enthalpies and their Solvent Dependence. Zeitschrift fĂŒr Physikalische Chemie, 133(1), 93-98. doi:10.1524/zpch.1982.133.1.093Winget, P., Cramer, C. J., & Truhlar, D. G. (2004). Computation of equilibrium oxidation and reduction potentials for reversible and dissociative electron-transfer reactions in solution. Theoretical Chemistry Accounts, 112(4). doi:10.1007/s00214-004-0577-0ÇAKIR, S., & BÇER, E. (2010). SYNTHESIS, SPECTRAL CHARACTERIZATION AND ELECTROCHEMISTRY OF VANADIUM(V) COMPLEX WITH TRYPTOPHAN. Journal of the Chilean Chemical Society, 55(2). doi:10.4067/s0717-9707201000020002

    Spectroscopic and molecular docking elucidation to binding characteristics of bovine serum albumin with bupropion an aminoketone-medication for nicotine addiction

    No full text
    One of the highly soluble protein presents in circulatory system of bovine body is bovine serum albumin (BSA). Bupropion hydrochloride (BRN) served to treat prime smoking cessation and disorder due to depressive. BRN binding to BSA was studied by molecular docking and lots of spectroscopic (UV-vis, emission, synchronous, 3D fluorescence, CD and FT-IR) methods at pH = 7.40. Static quenching with strong binding was obtained for BSA-BRN system by forming complex. Secondary structures, conformations and microenvironments of BSA were altered after BRN interaction. Distance between BRN and BSA was also achieved. Biologically active metal ions (Cu2+, Ca2+, Mg2+, Fe2+ and Zn2+) were also influenced on the BSA-BRN complex. Bonds of hydrogen and Van der Waals were major binding forces to stabilize BSA-BRN complex at site I (IIA) of BSA. Hence, binding of BRN to transport protein (BSA) is of prominent importance and these findings could be helpful for BRN pharmacology and potential clinical research
    corecore