448 research outputs found

    Can Radiomics Provide Additional Information in [F-18]FET-Negative Gliomas?

    Get PDF
    Simple Summary Amino acid positron emission tomography (PET) complements standard magnetic resonance imaging (MRI) since it directly visualizes the increased amino acid transport into tumor cells. Amino acid PET using O-(2-[F-18]fluoroethyl)-L-tyrosine ([F-18]FET) has proven to be relevant, for example, for glioma classification, identification of tumor progression or recurrence, or for the delineation of tumor extent. Nevertheless, a relevant proportion of low-grade gliomas (30%) and few high-grade gliomas (5%) were found to show no or even decreased amino acid uptake by conventional visual analysis of PET images. Advanced image analysis with the extraction of radiomic features is known to provide more detailed information on tumor characteristics than conventional analyses. Hence, this study aimed to investigate whether radiomic features derived from dynamic [F-18]FET PET data differ between [F-18]FET-negative glioma and healthy background and thus provide information that cannot be extracted by visual read. The purpose of this study was to evaluate the possibility of extracting relevant information from radiomic features even in apparently [F-18]FET-negative gliomas. A total of 46 patients with a newly diagnosed, histologically verified glioma that was visually classified as [F-18]FET-negative were included. Tumor volumes were defined using routine T2/FLAIR MRI data and applied to extract information from dynamic [F-18]FET PET data, i.e., early and late tumor-to-background (TBR5-15, TBR20-40) and time-to-peak (TTP) images. Radiomic features of healthy background were calculated from the tumor volume of interest mirrored in the contralateral hemisphere. The ability to distinguish tumors from healthy tissue was assessed using the Wilcoxon test and logistic regression. A total of 5, 15, and 69% of features derived from TBR20-40, TBR5-15, and TTP images, respectively, were significantly different. A high number of significantly different TTP features was even found in isometabolic gliomas (after exclusion of photopenic gliomas) with visually normal [F-18]FET uptake in static images. However, the differences did not reach satisfactory predictability for machine-learning-based identification of tumor tissue. In conclusion, radiomic features derived from dynamic [F-18]FET PET data may extract additional information even in [F-18]FET-negative gliomas, which should be investigated in larger cohorts and correlated with histological and outcome features in future studies

    Can Radiomics Provide Additional Information in [18F]FET-Negative Gliomas?

    No full text
    The purpose of this study was to evaluate the possibility of extracting relevant information from radiomic features even in apparently [18F]FET-negative gliomas. A total of 46 patients with a newly diagnosed, histologically verified glioma that was visually classified as [18F]FET-negative were included. Tumor volumes were defined using routine T2/FLAIR MRI data and applied to extract information from dynamic [18F]FET PET data, i.e., early and late tumor-to-background (TBR5–15, TBR20–40) and time-to-peak (TTP) images. Radiomic features of healthy background were calculated from the tumor volume of interest mirrored in the contralateral hemisphere. The ability to distinguish tumors from healthy tissue was assessed using the Wilcoxon test and logistic regression. A total of 5, 15, and 69% of features derived from TBR20–40, TBR5–15, and TTP images, respectively, were significantly different. A high number of significantly different TTP features was even found in isometabolic gliomas (after exclusion of photopenic gliomas) with visually normal [18F]FET uptake in static images. However, the differences did not reach satisfactory predictability for machine-learning-based identification of tumor tissue. In conclusion, radiomic features derived from dynamic [18F]FET PET data may extract additional information even in [18F]FET-negative gliomas, which should be investigated in larger cohorts and correlated with histological and outcome features in future studies

    Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of- flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential decrease with mass number

    Cardiac assessment and inflammatory markers in children with paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV2 (PIMS-TS) treated with methylprednisolone versus intravenous immunoglobulins: 6-month follow-up outcomes of the randomised controlled Swissped RECOVERY trialResearch in context

    No full text
    Summary: Background: Previous findings from the Swissped RECOVERY trial showed that patients with Pediatric Inflammatory Multisystem Syndrome–Temporally Associated with SARS-CoV-2 (PIMS-TS) who were randomly assigned to intravenous immunoglobulins or methylprednisolone have a comparable length of hospital stay. Here, we report the 6-month follow-up outcomes of cardiac pathologies and normalisation of clinical or laboratory signs of inflammation from this study population. Methods: This pre-planned follow-up of patients with PIMS-TS included the Swissped RECOVERY Trial reports on the 6-month outcomes of the cohort after randomisation, with a focus on cardiac, haematological, and biochemical findings. The trial was an investigator-initiated randomised multicentre open-label two-arm trial in children and adolescents hospitalised with PIMS-TS at ten hospitals in Switzerland. Cardiological assessments and laboratory analyses were prospectively collected in the intention-to-treat analysis on pre-defined intervals after hospital discharge. Differences between randomised arms were investigated using Chi-square test for categorical and Wilcoxon test for continuous variables. The trial is registered with the Swiss National Clinical Trials Portal (SNCTP000004720) and ClinicalTrials.gov (NCT04826588). Findings: Between May 21, 2021 and April 15, 2022, 75 patients with a median age of 9.1 years (IQR 6.2–12.2) were included in the intention-to-treat population (37 in the methylprednisolone group and 38 in the intravenous immunoglobulin group). During follow-up, the incidence of abnormal left ventricular systolic function, coronary artery aneurysms (CAA), and other signs of inflammation were comparable in both groups. However, we detected cardiac abnormalities with low incidence and a mild degree grade of pathology. CAAs were observed in 2/38 children (5.3%) in the IVIG group and 1/37 children (2.7%) in the methylprednisolone group at 6-month follow-up (difference proportion 0.75; 95% confidence interval (CI) −0.05 to 1.0; p = 0.39). Interpretation: Methylprednisolone alone may be an acceptable first-line treatment as left ventricular systolic dysfunction and clinical/laboratory evidence for inflammation quickly resolved in all children. However, our findings need further confirmation through larger studies as our sample size is likely to be of insufficient power to address rare clinically relevant adverse outcomes. Funding: NOMIS, Vontobel, and Gaydoul Foundation

    Enhanced deuteron coalescence probability in jets

    No full text
    The transverse-momentum (pT) spectra and coalescence parameters B2 of (anti)deuterons are measured in pp collisions at s√=13 TeV for the first time in and out of jets. In this measurement, the direction of the leading particle with the highest pT in the event (pleadT>5 GeV/c) is used as an approximation for the jet axis. The event is consequently divided into three azimuthal regions and the jet signal is obtained as the difference between the Toward region, that contains jet fragmentation products in addition to the underlying event (UE), and the Transverse region, which is dominated by the UE. The coalescence parameter in the jet is found to be approximately a factor of 10 larger than that in the underlying event. This experimental observation is consistent with the coalescence picture and can be attributed to the smaller average phase-space distance between nucleons inside the jet cone as compared to the underlying event. The results presented in this Letter are compared to predictions from a simple nucleon coalescence model, where the phase space distributions of nucleons are generated using PYTHIA 8 with the Monash 2013 tuning, and to predictions from a deuteron production model based on ordinary nuclear reactions with parametrized energy-dependent cross sections tuned on data. The latter model is implemented in PYTHIA 8.3. Both models reproduce the observed large difference between in-jet and out-of-jet coalescence parameters, although the almost flat trend of the BJet2 is not reproduced by the models, which instead give a decreasing trend

    Forward rapidity J/ψ production as a function of charged-particle multiplicity in pp collisions at s \sqrt{s} = 5.02 and 13 TeV

    No full text
    International audienceThe production of J/ψ is measured as a function of charged-particle multiplicity at forward rapidity in proton-proton (pp) collisions at center-of-mass energies s \sqrt{s} = 5.02 and 13 TeV. The J/ψ mesons are reconstructed via their decay into dimuons in the rapidity interval (2.5 < y < 4.0), whereas the charged-particle multiplicity density (dNch_{ch}/dη) is measured at midrapidity (|η| < 1). The production rate as a function of multiplicity is reported as the ratio of the yield in a given multiplicity interval to the multiplicity-integrated one. This observable shows a linear increase with charged-particle multiplicity normalized to the corresponding average value for inelastic events (dNch_{ch}/dη/〈dNch_{ch}/dη〉), at both the colliding energies. Measurements are compared with available ALICE results at midrapidity and theoretical model calculations. First measurement of the mean transverse momentum (〈pT_{T}〉) of J/ψ in pp collisions exhibits an increasing trend as a function of dNch_{ch}/dη/〈dNch_{ch}/dη〉 showing a saturation towards high charged-particle multiplicities.[graphic not available: see fulltext

    Hypertriton production in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The study of nuclei and antinuclei production has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. The first measurement of the production of 3ΛH in p-Pb collisions at sNN−−−√ = 5.02 TeV is presented in this Letter. Its production yield measured in the rapidity interval −1<y<0 for the 40% highest multiplicity p-Pb collisions is dN/dy=[6.3±1.8(stat.)±1.2(syst.)]×10−7. The measurement is compared with the expectations of statistical hadronisation and coalescence models, which describe the nucleosynthesis in hadronic collisions. These two models predict very different yields of the hypertriton in charged particle multiplicity environments relevant to small collision systems such as p-Pb and therefore the measurement of dN/dy is crucial to distinguish between them. The precision of this measurement leads to the exclusion with a significance larger than 6.9σ of some configurations of the statistical hadronization model, thus constraining the theory behind the production of loosely bound states at hadron colliders
    corecore