12 research outputs found

    Primary Cilia in Cardiac Valve Development and Disease

    Get PDF
    Cardiac valve disease is a major health burden affecting around 5% of the population. Two of the most common cardiac valve disease include mitral valve prolapse (MVP) and bicuspid aortic valve disease (BAV). Currently treatment options consist of invasive surgeries to either repair or replace the damages valve tissues. Evidence suggests that both MVP and BAV are congenital diseases that present complications in patients later in life. Treatment options for these diseases are lacking due to an incomplete understanding of the molecular causes. Mitral valve prolapse (MVP) is one of the most common forms of cardiac valve disease and affects ~2-3% of the human population. MVP can lead to secondary complications such as arrhythmias, heart failure, and sudden cardiac death and 1 in 10 patients will require valve surgery. There are no effective nonsurgical treatments for MVP and therapeutic efforts have been hindered by an incomplete understanding of its fundamental causes. One accessible source of such information may come from genetic studies of MVP. We previously reported familial and GWAS studies that identified genetic mutations and/or excellent candidate targets as causal to MVP. Pathway analyses suggested a common cellular and molecular thread between these studies and invoke the primary cilia as potential unifying mechanism. This discovery is further bolstered by our recent identification of a mutation in a cilia gene in a large family with MVP, DZIP1. Our data show genetic haploinsufficiency of primary cilia in cardiac valves leads to a non-syndromic mitral valve disease in mouse models whereas complete genetic ablation enhances mitral valve phenotype severity and generation of bicuspid aortic valve (BAV). We present, for the first time, a potential common cellular and molecular thread through which MVP and potentially BAV can arise. These studies define the primary cilia as a critical, and previously unrecognized facet of cardiac valve development. Uncovering how valve disease genes regulate downstream signaling cascades will provide key mechanistic insights into MVP and potentially BAV pathogenesis at a cellular and molecular level

    Mutations in DCHS1 Cause Mitral Valve Prolapse

    Get PDF
    SUMMARY Mitral valve prolapse (MVP) is a common cardiac valve disease that affects nearly 1 in 40 individuals1–3. It can manifest as mitral regurgitation and is the leading indication for mitral valve surgery4,5. Despite a clear heritable component, the genetic etiology leading to non-syndromic MVP has remained elusive. Four affected individuals from a large multigenerational family segregating non-syndromic MVP underwent capture sequencing of the linked interval on chromosome 11. We report a missense mutation in the DCHS1 gene, the human homologue of the Drosophila cell polarity gene dachsous (ds) that segregates with MVP in the family. Morpholino knockdown of the zebrafish homolog dachsous1b resulted in a cardiac atrioventricular canal defect that could be rescued by wild-type human DCHS1, but not by DCHS1 mRNA with the familial mutation. Further genetic studies identified two additional families in which a second deleterious DCHS1 mutation segregates with MVP. Both DCHS1 mutations reduce protein stability as demonstrated in zebrafish, cultured cells, and, notably, in mitral valve interstitial cells (MVICs) obtained during mitral valve repair surgery of a proband. Dchs1+/− mice had prolapse of thickened mitral leaflets, which could be traced back to developmental errors in valve morphogenesis. DCHS1 deficiency in MVP patient MVICs as well as in Dchs1+/− mouse MVICs result in altered migration and cellular patterning, supporting these processes as etiological underpinnings for the disease. Understanding the role of DCHS1 in mitral valve development and MVP pathogenesis holds potential for therapeutic insights for this very common disease

    Increased Infiltration of Extra-Cardiac Cells in Myxomatous Valve Disease

    No full text
    Mutations in the actin-binding gene Filamin-A have been linked to non-syndromic myxomatous valvular dystrophy and associated mitral valve prolapse. Previous studies by our group traced the adult valve defects back to developmental errors in valve interstitial cell-mediated extracellular matrix remodeling during fetal valve gestation. Mice deficient in Filamin-A exhibit enlarged mitral leaflets at E17.5, and subsequent progression to a myxomatous phenotype is observed by two months. For this study, we sought to define mechanisms that contribute to myxomatous degeneration in the adult Filamin-A-deficient mouse. In vivo experiments demonstrate increased infiltration of hematopoietic-derived cells and macrophages in adolescent Filamin-A conditional knockout mice. Concurrent with this infiltration of hematopoietic cells, we show an increase in Erk activity, which localizes to regions of MMP2 expression. Additionally, increases in cell proliferation are observed at two months, when hematopoietic cell engraftment and signaling are pronounced. Similar changes are observed in human myxomatous mitral valve tissue, suggesting that infiltration of hematopoietic-derived cells and/or increased Erk signaling may contribute to myxomatous valvular dystrophy. Consequently, immune cell targeting and/or suppression of pErk activities may represent an effective therapeutic option for mitral valve prolapse patients

    Alk3 mediated Bmp signaling controls the contribution of epicardially derived cells to the tissues of the atrioventricular junction

    No full text
    Recent studies using mouse models for cell fate tracing of epicardial derived cells (EPDCs) have demonstrated that at the atrioventricular (AV) junction EPDCs contribute to the mesenchyme of the AV sulcus, the annulus fibrosus, and the parietal leaflets of the AV valves. There is little insight, however, into the mechanisms that govern the contribution of EPDCs to these tissues. While it has been demonstrated that bone morphogenetic protein (Bmp) signaling is required for AV cushion formation, its role in regulating EPDC contribution to the AV junction remains unexplored. To determine the role of Bmp signaling in the contribution of EPDCs to the AV junction, the Bmp receptor activin-like kinase 3 (Alk3; or Bmpr1a) was conditionally deleted in the epicardium and EPDCs using the mWt1/IRES/GFP-Cre (Wt1(Cre)) mouse. Embryonic Wt1(Cre);Alk3(fl/fl) specimens showed a significantly smaller AV sulcus and a severely underdeveloped annulus fibrosus. Electrophysiological analysis of adult Wt1(Cre);Alk3(fl/fl) mice showed, unexpectedly, no ventricular pre-excitation. Cell fate tracing revealed a significant decrease in the number of EPDCs within the parietal leaflets of the AV valves. Postnatal Wt1(Cre);Alk3(fl/fl) specimens showed myxomatous changes in the leaflets of the mitral valve. Together these observations indicate that Alk3 mediated Bmp signaling is important in the cascade of events that regulate the contribution of EPDCs to the AV sulcus, annulus fibrosus, and the parietal leaflets of the AV valves. Furthermore, this study shows that EPDCs do not only play a critical role in early developmental events at the AV junction, but that they also are important in the normal maturation of the AV valve

    Desert Hedgehog-Primary Cilia Cross Talk Shapes Mitral Valve Tissue by Organizing Smooth Muscle Actin

    No full text
    Non-syndromic mitral valve prolapse (MVP) is the most common heart valve disease affecting 2.4% of the population. Recent studies have identified genetic defects in primary cilia as causative to MVP, although the mechanism of their action is currently unknown. Using a series of gene inactivation approaches, we define a paracrine mechanism by which endocardially-expressed Desert Hedgehog (DHH) activates primary cilia signaling on neighboring valve interstitial cells. High-resolution imaging and functional assays show that DHH de-represses smoothened at the primary cilia, resulting in kinase activation of RAC1 through the RAC1-GEF, TIAM1. Activation of this non-canonical hedgehog pathway stimulates α-smooth actin organization and ECM remodeling. Genetic or pharmacological perturbation of this pathway results in enlarged valves that progress to a myxomatous phenotype, similar to valves seen in MVP patients. These data identify a potential molecular origin for MVP as well as establish a paracrine DHH-primary cilium cross-talk mechanism that is likely applicable across developmental tissue types

    Potential anti-icing applications of encapsulated phase change material–embedded coatings; a review

    Get PDF
    Icephobic surfaces are highly sought-after materials as there is a need to reduce the catastrophic outcomes of ice formation on outdoor surfaces. Existing anti-icing strategies, including superhydrophobic surfaces (SHPSs) and slippery liquid–infused porous surfaces (SLIPS), are often ineffective against frost formation or have a limited durability. As such, new approaches are required, and the incorporation of phase change materials (PCMs) into polymeric matrices offers a potential means of delaying ice formation and reducing ice adhesion on exposed surfaces. Homogeneously dispersed encapsulated PCMs (EPCMs) of uniform size inside a binder can release high amounts of latent heat and produce local shear stresses on surfaces—due to their volume change—during icing conditions, thereby reducing ice adhesion strength. Furthermore, surface protrusions produced by the EPCMs can also impart hydrophobicity or even superhydophobicity onto a surface to delay ice formation. This contribution reviews recent progress in the development of ECPM-based anti-icing surfaces. We also discuss the advantages and challenges of using PCM materials for anti-icing applications, summarize existing encapsulation methods, and outline the ECPM-based mechanisms that hinder ice formation and lower ice adhesion
    corecore