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SUMMARY

Mitral valve prolapse (MVP) is a common cardiac valve disease that affects nearly 1 in 40 

individuals1–3. It can manifest as mitral regurgitation and is the leading indication for mitral valve 

surgery4,5. Despite a clear heritable component, the genetic etiology leading to non-syndromic 

MVP has remained elusive. Four affected individuals from a large multigenerational family 

segregating non-syndromic MVP underwent capture sequencing of the linked interval on 

chromosome 11. We report a missense mutation in the DCHS1 gene, the human homologue of the 

Drosophila cell polarity gene dachsous (ds) that segregates with MVP in the family. Morpholino 

knockdown of the zebrafish homolog dachsous1b resulted in a cardiac atrioventricular canal 

defect that could be rescued by wild-type human DCHS1, but not by DCHS1 mRNA with the 

familial mutation. Further genetic studies identified two additional families in which a second 

deleterious DCHS1 mutation segregates with MVP. Both DCHS1 mutations reduce protein 

stability as demonstrated in zebrafish, cultured cells, and, notably, in mitral valve interstitial cells 

(MVICs) obtained during mitral valve repair surgery of a proband. Dchs1+/− mice had prolapse of 

thickened mitral leaflets, which could be traced back to developmental errors in valve 

morphogenesis. DCHS1 deficiency in MVP patient MVICs as well as in Dchs1+/− mouse MVICs 

result in altered migration and cellular patterning, supporting these processes as etiological 

underpinnings for the disease. Understanding the role of DCHS1 in mitral valve development and 

MVP pathogenesis holds potential for therapeutic insights for this very common disease.

In a previous study, based on specific diagnostic criteria6–9, MMVP2 (Myxomatous Mitral 

Valve Prolapse-2) was mapped to a 4.3 cM region of chromosome 11p15.4 in a family of 

Western European descent segregating non-syndromic mitral valve prolapse as an autosomal 

dominant trait with age-dependent penetrance (Fig. 1A, C)6. We performed tiled capture and 

high-throughput sequence analysis of genomic DNA from four affected individuals (Fig. 

1A), identifying 4891 single nucleotide variants (SNVs) and insertion/deletion 

polymorphisms in the targeted region (see Methods). After selecting rare protein-coding 

variants shared among all affected pedigree members, we identified three heterozygous 

protein-altering variants: two missense SNVs in DCHS1, a member of the cadherin 

superfamily10, resulting in p.P197L and p.R2513H (Fig. 1B), and a single missense SNV, in 

APBB1, the amyloid beta (A4) precursor protein-binding family B, member 1 gene resulting 

in p.R481H. Both DCHS1 mutations, p.P197L and p.R2513H, were rare in the population 

(the former observed three times in 4300 European-American individuals from the NHLBI 

Exome Sequencing Project and the latter never observed), and both were predicted to be 

protein damaging by PolyPhen-211, LRT12, and MutationTaster13. While the APBB1 variant 

was also rare in population-based data, no cardiac phenotype was observed in apbb1 

morphant zebrafish, despite reduction of apbb1 mRNA (Extended Data Fig. 1A, B). 

Additionally, Apbb1 is not expressed in murine cardiac valves (Extended Data Fig. 2)14, and 

no cardiac defects have been reported in the Apbb1 knockout mouse15. This suggests that 

the APBB1 variant is unlikely to be contributing to MVP in this family.
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The functional impact of the DCHS1 variants was evaluated in the zebrafish Danio rerio, as 

this model system lends itself to functional annotation of mutations implicated in human 

disease16–18. Zebrafish have two DCHS1 homologues, dachsous1a and dachsous1b. 

Dachsous1b is located in a region of Danio rerio chromosome 10 that is syntenic to the 

DCHS1 region of human chromosome 11. Knockdown of dachsous1a did not result in a 

cardiac phenotype despite reduction in mRNA levels (Extended Data Fig. 1A–B); however, 

knockdown of dachsous1b (dchs1b) led to significant changes in cardiac morphology (Fig. 

2A; Extended Data Fig. 1A). Control zebrafish hearts undergo looping and develop an 

atrioventricular (AV) constriction by 48 hours post-fertilization (hpf), whereas dchs1b 

knockdown disrupts this process resulting in impaired formation of the atrioventricular 

constriction (Fig. 2A–B). While control embryos have unidirectional blood flow between the 

atrium and ventricle at 72 hpf (Supplemental Video 4), dchs1b knockdown causes 

regurgitation of blood from the ventricle into the atrium (Supplemental Video 5). An AV 

canal defect was defined as failure of cardiac looping combined with any AV regurgitation 

at 72 hpf. Using a high morpholino dose (1.5 ng) to establish the phenotype, the prevalence 

of AV canal defects was 76% (n=170), whereas spontaneous cardiac defects were rarely 

observed in controls (0.5%, n=205) (Fig. 2B). Whole-mount in situ hybridization of dchs1b 

confirmed predominant expression at the AV junction at 54 and 72hpf, corresponding to the 

temporal defects observed in the morphants (Extended Data Fig. 3A–C). We evaluated gene 

expression patterns in the developing AV ring, and observed that bmp4 expression is 

expanded into the ventricle at 48 hpf in dchs1b knockdown embryos while it is restricted to 

the AV ring in controls (Extended Data Fig. 4A–B). Additionally, has2 expression was not 

detectable at 48 hpf, and only faintly at 72 hpf in the dchs1b knockdown (Extended Data 

Fig. 4I–L). To test mutation pathogenicity in this model, rescue experiments were performed 

using both wild-type human DCHS1 and P197L/R2513H mutant mRNA, which were 

injected into dchs1b knockdown zebrafish with a lower dose of morpholino (0.75 ng) to 

minimize combined morpholino/mRNA toxicity. Human wild-type DCHS1 mRNA rescued 

the AV canal defect observed upon dchs1b knockdown, whereas injection of an equimolar 

amount of mutant DCHS1 mRNA failed to rescue (Figure 2C). Injection of the mutant 

DCHS1 mRNA alone did not cause AV canal defects, supporting a loss of function 

mechanism for the DCHS1 mutation.

Having demonstrated segregation of a loss-of-function DCHS1 mutation with MVP in our 

large pedigree, we sought to determine if genetic variation in DCHS1 plays a role in MVP 

beyond the linked family. By evaluating a cohort of MVP patients, we identified 2 

additional families in which MVP segregated with the novel DCHS1 protein variant 

p.R2330C (Fig. 1D–G). The proband of family 2 underwent surgical mitral valve repair for 

severe MVP and mitral regurgitation at age 21. Valve tissue was resected to repair the 

posterior leaflet and examination of the tissue showed classic myxomatous degeneration19,20 

(Extended Data Fig. 5). Mitral valve interstitial cells were isolated from a portion of the 

posterior leaflet resected during surgery, providing a unique resource for the functional 

studies described below. The proband’s sister, evaluated at age 27 and also heterozygous for 

the p.R2330C mutation, demonstrated classical MVP with thickened leaflets and moderate 

regurgitation. The father and maternal grandmother were unaffected and do not carry the 

mutation. The mother (age 49) and maternal grandfather (age 76) are both affected with mild 
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MVP and both carry p.R2330C. In family 3, the proband (Fig. 1E) had moderate to severe 

heart failure due to severe mitral regurgitation with posterior leaflet prolapse requiring 

surgery at age 72. The proband’s sister, age 69, is unaffected and negative for the p.R2330C 

mutation. The son (age 52) and the daughter (age 53) are both affected with MVP and both 

carry p.R2330C. The second son (age 55) also carries p.R2330C, however his MVP status is 

indeterminate due to due to mild LV inferior wall hypokinesis that tethers the leaflets down 

into the LV cavity21, masking leaflet prolapse motion toward the left atrium.

To evaluate the functional consequence of the DCHS1 mutations, we quantified protein 

levels in cells transfected with either wild-type or variant (p.P197L/p.R2513H) DCHS1 

cDNA constructs. Expression of the DCHS1 mutant protein was ~60% less than wild-type 

with no significant change in mRNA levels, suggesting that the DCHS1 variants reduce 

protein stability (Fig. 3A–C). Cycloheximide treatment revealed that wild-type DCHS1 

protein in transfected cells had a half-life of 5.8 hours while the mutant DCHS1 protein 

(p.P197L/p.R2513H) had a half-life of 1.6 hours (Fig. 3D, E). DCHS1 constructs harboring 

either p.P197L or p.R2513H were evaluated showing that p.R2513H markedly reduced 

protein levels, implicating this variant as pathogenic in the family (Fig. 1, Extended Data 

Fig. 6). A similar analysis of DCHS1 protein half-life was conducted using p.R2330C 

MVICs from the proband of family 2. Consistent with the data obtained from the p.R2513H 

transfectants, these studies showed significant reduction in protein half-life compared to 

control MVICs (t1/2 = 0.46 hours vs. 1.73 hours, Fig. 3D,E). Together, our studies show that 

p.R2513H and p.R2330C result in DCHS1 loss of function. In order to evaluate DCHS1 loss 

of function in a mammalian model, we analyzed Dchs1 deficient mice for phenotypic 

similarities to human MVP.

Homozygous knockout of Dchs1 in mice results in neonatal lethality and multi-organ 

impairment22; however, the relevant genetic model for human MVP is the heterozygous 

Dchs1 mouse. Dchs1+/− mice exhibit mitral valve prolapse with pronounced involvement of 

the posterior leaflet, which is elongated and shifts the leaflet coaptation anteriorly (Fig. 4) as 

in the proband from Family 1 (Fig. 1C, Supplementary Videos 1–3, 6, 7)23. Micro-MRI 

analyses and 3D reconstructions of adult Dchs1+/− mice reveal prominent posterior leaflet 

thickening with quantitative increases in valve volume (Fig. 4 and Supplementary Video 8). 

All other echocardiographic measurements were unchanged (Extended Data Fig. 7). 

Histological and molecular characterization of Dchs1+/− mice confirmed leaflet thickening 

and showed myxomatous degeneration with increased proteoglycan accumulation in both 

mitral leaflets (Fig. 4). These results clearly show that Dchs1 heterozygosity results in mitral 

valve prolapse in mice.

To determine if MVP has a developmental origin, we performed expression and functional 

analyses during embryonic and fetal timepoints. RNA in situ hybridization and 

immunohistochemistry showed expression of Dchs1 in endocardial and mesenchymal cells 

of atrioventricular valve leaflets at all timepoints examined (Extended Data Fig. 8). While 

no morphological defects were observed in the Dchs1+/− mice during early embryonic 

development (E11.5–E13.5), at later timepoints (E15.5–E17.5) Dchs1+/− mice displayed 

changes in mitral-valve shape (Fig. 5A–C), which were more severe in Dchs1−/− animals. 

Histology and three-dimensional reconstructions of anterior and posterior mitral leaflets at 
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E17.5 of Dchs1+/+, Dchs1+/−, and Dchs1−/− mice showed comparable leaflet volumes. 

However, Dchs1+/− and Dchs1−/− animals exhibited statistically significant changes in 

valve length and width (Supplemental Video 9 and Fig. 5A–C). In most leaflet regions 

measured, Dchs1+/− animals displayed an intermediate phenotype, demonstrating a gene 

dosage effect. These shape changes implicate Dchs1 as critical for proper anatomical 

patterning of the valve, consistent with previous reports of dachsous function in the 

Drosophila wing24. Thus, in vivo lineage-tracing studies were performed on Dchs1+/+ and 

Dchs1+/− mice. Crossing the WT1-Cre/ROSA-eGFP25 line onto both Dchs1+/+ and 

Dchs1+/− backgrounds allowed visualization of patterning defects of epicardial-derived cells 

(EPDCs) during migration into the posterior leaflet. This EPDC population initially migrates 

into the posterior leaflet as a sheet of cells. However, in the Dchs1+/− mice this sheet-like 

appearance is disrupted and an increase in EPDCs infiltrating diffusely throughout the valve 

tissue is observed (Extended Data Fig. 9A–C, Supplementary Video 10), concomitant with 

altered cellular patterning and alignment (Extended Data Fig. 9D, E). In vitro studies of 

MVICs from Dchs1+/− and from the Family 2 MVP proband (p.R2330C) also show this 

increased migration phenotype (Extended Data Fig. 10A, B). Taken together, the mouse and 

human studies support a developmental etiology for MVP, and invoke a model for MVP in 

which cell migration and patterning defects mediated by DCHS1 contribute to disease 

pathogenesis.

MVP is one of the most common cardiovascular diseases, affecting nearly 1 in 40 people 

world-wide1–3. Although its heritability and variable expression in large pedigrees has been 

known for decades, its genetic underpinnings have remained elusive23,26. We report the 

discovery of two loss-of-function mutations in DCHS1 that segregate with MVP in three 

families. Our mouse models exhibit classical MVP, a phenotype that was traced back to 

developmental errors during valve morphogenesis. These findings provide a model for 

understanding inherited non-syndromic MVP as a developmentally based disease that 

progresses over the lifespan of affected individuals, consistent with previous reports on the 

natural history of MVP27. A robust estimate of the total contribution of rare DCHS1 genetic 

variation to sporadic MVP has yet to be determined and will require sequencing of large 

cohorts of MVP patients. Nonetheless, discovery of this novel mechanistic pathway 

elucidated by intensively studying rare familial mutations will facilitate the identification of 

additional MVP genes and reveal pathogenic mechanisms that hold the potential for pre-

surgical therapy for this very common cardiac disease.

METHODS

Study Participants

Family 1 was originally recruited through the Echocardiography Laboratory at 

Massachusetts General Hospital as part of a phenotype-driven genetic study of MVP. MVP 

was diagnosed by specific criteria (>2 mm atrial leaflet displacement in a parasternal long-

axis view)6–9. The study was approved by the Institutional Review Board of Partners 

Healthcare, Boston, MA, and all participants provided written informed consent. Complete 

details of the linkage analysis on this large, multigenerational family have been previously 

published6. In brief, the family contains 41 individuals in five generations. Echocardiograms 
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and DNA were obtained on 28 subjects, of whom 12 were diagnosed with MVP, three were 

classified as having nondiagnostic minimal leaflet displacement, and 13 were unaffected6. 

Three patients had non-diagnostic valve leaflet displacement and were considered unknown 

for the original linkage analysis. The proband had prominent MVP with thickened leaflets, 

severe MR, and heart failure ultimately requiring surgical valve repair (Fig. 1C, 

Supplemental Videos 1–3). Other affected members also showed diffuse leaflet thickening, 

prolapse, and MR of varying severity; one required surgical repair. No extracardiac 

manifestations of connective-tissue abnormalities or Marfan syndrome were present in any 

family members. Following a complete genome scan, parametric and non-parametric 

analyses confirmed linkage of this family to a 4.3 cM region of chromosome 11p15.4. 

Consistent with the model of sex- and age-dependent penetrance, several of the unaffected 

members who carried the MVP allele were less than 15 years old at the time of evaluation 

(Fig. 1A). Importantly, an analysis utilizing only affected individuals confirmed the linkage 

result.

DNA Sequencing and Variant Calling in Family 1

In order to identify the mutation, four affected individuals who shared the disease haplotype 

were chosen for sequencing (Fig. 1A). To reduce the likelihood of random haplotype 

sharing, we selected individuals with four distinct haplotypes on the non-MVP allele. A 2.1 

Mb region of human chromosome 11 (5094774–7248926; NCBI36 coordinates) was 

targeted and screened for repetitive regions using the SureSelect system (Agilent). DNA 

extraction was performed using the AutoGenFlex STAR automated system (Autogen) and 

FlexiGen DNA purification reagents (Qiagen) according to the manufacturers’ instructions. 

Bait oligonucleotides were designed to the non-repetitive regions of the targeted linkage 

peak, resulting in 1.03 Mb of target sequence using the SureSelect in-solution long RNA 

baits (Agilent). Captured DNA was amplified and quantified using the Agilent High 

Sensitivity DNA Kit for the Agilent 2100 Bioanalyzer, and sequenced using Illumina 

sequencing chemistry (paired-end, 100 cycles) at the Venter Institute supported by the 

NHLBI Resequencing and Genotyping Program. One hundred bases were sequenced from 

each end of the captured DNA fragments. Image analysis and base calling were performed 

using Illumina’s GA Pipeline version 1.6.0. Sequence reads were mapped to the human 

genome (ncbi36) and variants identified using clc-ngs-cell-2.0.5-linux_64 

(clc_ref_assemble_long -q -p fb ss 180 360 –I –r, and find_variations -c 8 -v -f 0.2). 

Variants were classified using VariantClassifier28. 4891 SNVs were identified in the four 

subjects, 1951 were shared by all four subjects. We classified all rare SNVs or those of 

unknown frequency based on conservation data, population genetic data, and predictive 

functional impact from public resources. We performed analyses of conservation of the 

variant locus using PhyloP29, PhastCONS30 and GERP31, and assessed the population 

frequency initially using the Exome Variant Server, NHLBI GO Exome Sequencing Project 

(ESP), Seattle, WA (URL: http://evs.gs.washington.edu/EVS/) as an initial filter and the 

1,000 Genomes Project32 as a secondary filter, cognizant of the limitations of the low-depth 

coverage of the 1,000 Genomes Project to characterize rare mutations, which were available 

during our initial analyses.
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Sporadic MVP Patient Cohort

As part of an international consortium on mitral valve disease, we initiated collection of 

MVP patients with the eventual goal of performing GWAS studies in MVP. To date, 1896 

patients have been collected in the United States, France, and Spain. MVP was defined as 

systolic displacement of one or both mitral leaflets ≥2mm beyond the annulus in parasternal 

or apical long-axis views, asymmetric posterior leaflet prolapse was also included in any 

view, including apical 4-chamber, when confirmed by side-to-side long-axis scanning 7,8. 

Patients were required to have no evidence by history, physical examination, or imaging for 

Marfan syndrome or other connective tissue disorders associated with MVP.

Exome Sequencing, Genotyping, and Variant Evaluation

As part of an MVP exome sequencing pilot project conducted by the Leducq Mitral 

Network, exome data were generated on twenty-one severe, early onset MVP patients and 

made available to identify variants in DCHS1. Fifteen patients were collected in Paris and 

had severe bileaflet mitral valve prolapse with myxomatous leaflets and an average age of 

onset of 15 years. Six patients were collected in Nantes, France, and had similar clinical 

characteristics with an average age at onset of 42. Exome capture was carried out using the 

SureSelect Human All Exon System using the manufacturer’s protocol version 1.0 that is 

compatible with Illumina paired-end sequencing. Exome-enriched genomes were 

multiplexed by flow cell for 101-bp paired-end read sequencing according to the protocol 

for the Hiseq 2000 sequencer (version 1.7.0; Illumina) to allow a minimum coverage of 30x. 

Reads were aligned to the human reference genome (UCSC NCBI36/hg19) using the 

Burrows-Wheeler Aligner (version 0.5.9). Evaluation of the DCHS1 gene yielded 4 novel 

coding sequence variants that confirmed following repeat Sanger sequencing: 6646587 G/A 

(p.R2330C) 6646709 G/A (p.A2289V), 6648584 C/T (p.A1896T), 6648820 A/G 

(p.V1817A), base pair positions are NCBI36 coordinates. These four variants, in addition to 

the variants identified in Family 1, were genotyped using Sequenom technology in the 

sporadic cohort. The major steps included primer and multiplex assay design using 

Sequenom’s MassARRAY® Designer software, DNA amplification by PCR, post-PCR 

nucleotide deactivation using shrimp alkaline phosphatase (SAP) to remove phosphate 

groups from unincorporated dNTPs, single-base extension reaction for allele differentiation, 

salt removal using ion-exchange resin, and mass correlated genotype calling using 

SpectroCHIP® array and MALDI-TOF mass spectrometry. Quality control to determine 

sample and genotyping quality and to potentially remove poor SNPs and/or samples was 

performed in PLINK, a whole genome association analysis toolset. We predicted the impact 

on gene function using PolyPhen211, Mutation Taster13 and LRT12.

Identification of Family 2 and 3

In order to identify other mutations in DCHS1, we first evaluated DCHS1 in the exome 

sequence data described above, reasoning that early onset forms may be more likely to have 

strong genetic etiologies. Rare variants causing amino acid substitutions in DCHS1 were 

identified in four individuals (p.V1817A, p.A1896T, p.A2289V, and p.R2330C) and 

genotyped in a cohort of 1864 sporadic MVP patients that included the 21 individuals with 

exome data; two of these variants, both localized to exon 19, were observed in the MVP 
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cohort (p.A2289V in two cases and p.R2330C in three cases). The proband in family 2 

carried the p.R2330C variant and underwent surgery for MVP in Paris. We were able to 

collect DNA and echocardiograms on first-degree relatives at that time. Additional clinical 

characteristics of the proband in family 2 included congestive heart failure (NYHA II/III) 

with left ventricular [LV] dilatation (70/50 mm end-diastolic/end-systolic dimensions), 

impaired LV systolic function (ejection fraction 53%, low for this volume overload), 

recurrent symptomatic atrial fibrillation, non-sustained ventricular tachycardia, and exercise-

induced pulmonary hypertension (70 mmHg systolic). The proband in family 3 was 

originally collected in Amiens, France. All echocardiograms were read in both Boston and 

Paris and readers were blind to genotype data.

Danio Rerio Studies

Husbandry, knockdown and expression analyses were performed in the wild-type Danio 

rerio (zebrafish) strain Tubingen AB. Morpholinos were injected at a dose of 1.5 ng (after 

dose optimization) into single-cell embryos to achieve gene knockdown, and phenotypes 

were examined at 48 and 72 hours post-fertilization in three separate experiments of 50–75 

embryos and compared to controls using the Fisher’s Exact test. Morpholino GeneTools 

LLC (Philomath, OR) sequences were as follows: apbb1 

AACAAAGCGTACCACTCAGATTAGC, dchs1a 

TAAAGAAATGACAGTCCTACCTCCA, and dchs1b 

CATAACTGTTAAGAGTTCCGCTACA. Knockdown was confirmed by quantitative 

polymerase chain reaction. qPCR was performed as previously described 33. In brief, 20–30 

morpholino-injected embryos were collected at 72 hpf, and snap frozen in liquid nitrogen. 

Trizol (Sigma) was added, RNA was purified according to the manufacturer’s instructions, 

and cDNA was prepared using a Superscript III Kit (Invitrogen). Primer sets were as 

follows: apbb1, 5′-GTGGAGGCGAGAACAGAG, 5′-CCAGCAGGAAGATCCGTGTC; 

dchs1a, 5′-GTTTCATGGAGGTTACAGC, 5′-CTTAATCCACCCCCATCCAC; dchs1b, 

5′-GTTTCCTTGAGGTAAAGGCGG, 5′-GGCCACCCCCATCGGACG. qPCR was 

performed using SYBR Green (Applied Biosystems) in triplicate on an Applied Biosystems 

7500 Fast Real-Time PCR instrument and normalized against β-actin. All zebrafish 

experiments were performed under protocols approved by the Institutional Animal Care and 

Use Committee at Mass General Hospital.

Danio rerio in situ hybridizations

In situ hybridizations were performed as previously described34 using a partial clone of 

dchs1b (Open Biosystems, Clone ID# 7136458) amplified with primers containing a T7 

RNA polymerase site engineered onto the 3′ end of the reverse primer (Forward 5′-

GGCAGTTCAAGTGGTGGT. Reverse: 

TAATACGACTCACTATAGGGTTAAATCCTCATCTCAGCCTCA, T7 site underlined.) 

The dchs1b probe was produced using a T7 RNA polymerase (Ambion,) and digoxygenin-

labelled dNTPs (Roche). Other riboprobes utilized in the study have been previously 

described 35.
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Generation of DCHS1 expression constructs

Human DCHS1 and the mutant containing the c.590C>T and c.7538G>A sequence changes 

were synthesized by Integrated DNA Technologies. A unique EcoRI site, a T7 polymerase 

site, and a Kozak sequence were added to the 5′ end of each gene, while a V5 tag and unique 

Xho1 site were added to the 3′ end. Each gene was then subcloned into the expression vector 

pcDNA3.1. Additional expression constructs were generated that contained only the c.

590C>T (p.P197L) mutation or only the c.7538G>A (p.R2513H) mutation. These constructs 

were made using the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent 

Technologies) as per the manufacturers instructions. The P197L construct was generated 

from the double mutant construct by changing the R2513H (c.7538G>A) mutation back into 

the wild type sequence using the following primers: 5′-gctgatggaagccgcagccatgccgct, 3′-

agcggcatggctgcggcttccatcagc. (The underlined bold base indicates the base pair changed.) 

The R2513H construct was generated by introducing the (c.7538G>A) mutation into the 

wild type DCHS1 construct using the following primers: 5′-gctgatggaagccacagccatgccgct, 

3′-agcggcatggctgtggcttccatcagc.

Preparation and injection of DCHS1 mRNA

mRNA was prepared from the wild-type DCHS1 and DCHS1 mutant expression vectors 

using a T7 Message Machine Kit (Ambion) according to the manufacturer’s instructions. 

Injection mixtures containing 0.75 ng dchs1b MO alone, or 0.75 ng dchs1b MO plus 7 fg/μL 

of human DCHS1 mRNA (either wild type or mutant) were injected into one-cell embryos, 

and fish were scored for AV canal defects (failure to loop, and presence of regurgitation) 72 

hours later. Data were collected from three independent experiments performed with 20–30 

embryos each and comparisons made using Fisher’s Exact test.

Isolation of DCHS1 p.R2330C MVP and Control Patient Mitral Valve Tissue and Valvular 
Interstitial Cells

Resected posterior mitral valve tissue was utilized for culture and histology. For culture, 

valve pieces were minced in phosphate buffered saline (PBS) and washed in DMEM with 

antibiotics (Penicillin/Streptomycin (P/S) and fungizone) and incubated in DMEM with 

collagenase type II (Worthington) (1mg/ml) at 37°C for 12h. Following mechanical 

dissociation in DMEM, the cell suspension was filtered through a 40μm cell strainer and 

cells were cultured in DMEM with 15% fetal calf serum and antibiotics (P/S, fungizone). 

Although rare valve endothelial cells were present at P0, only cells with a fibroblastic 

phenotype (VICs) remained following P1–2. For all experiments, these valvular interstitial 

cells were utilized prior to passage 5. For Histology: valves were fixed in formalin, 

embedded in paraffin and sectioned at 5μm. Movat’s Pentachrome histological stain was 

performed using standard procedures.

Cell Culture Studies

Wild type, p.P197L, p.R2513H, and p.P197L/R2513H DCHS1 constructs were either 

synthesized by Integrated DNA Technologies or generated by site-directed mutagenesis (as 

described above), with an amino-terminal V5 epitope tag. Except where indicated, “mutant 

DCHS1” indicates the double mutant p.P197L/p.R2513H haplotype in Family 1. These 
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constructs were expressed in mycoplasma-free HEK293 cells (ATCC) using cationic lipid-

mediated transient transfection (Lipofectamine LTX, Invitrogen). Protein expression of 

transfected HEK cells was measured by quantifying Western blots using an antibody to the 

V5 epitope tag (Invitrogen). Patient Cells: For patient cells, control and p.R2330C valvular 

interstitial fibroblasts from posterior leaflets were plated at 2.5×104 cells were plated in a 

24-well dish. 24 hours later, protein stability experiments were performed. Protein stability 

experiments involved addition of cycloheximide 24 hours after transfection (WT and 

p.R2513H transfectants) or plating (control or p.R2330C patient cells). For the 

cycloheximide experiments, media containing 100 ng/mL of cycloheximide was added at 24 

hours post-transfection and each well was harvested as above at the indicated time points. 

Western blots were probed with either a mouse anti-V5 primary antibody (1:4000 dilution-

Invitrogen) or a rabbit anti-Dchs1 antibody 36(1:1500 dilution), and an HRP-linked 

secondary at the same dilution (Thermo Scientific). Blots were also probed with a mouse 

anti-tubulin primary (Millipore) at a 1:4000 dilution, and the same secondary antibody as 

above. Blots were treated with Pierce ECL Substrate and visualized on film. For 

quantitation, blot pixel intensity was measured by ImageJ (NIH), and normalized to tubulin. 

Each sample was run in triplicate, and a regression curve was fit and half-lives calculated 

using SigmaPlot 12.

Mouse Studies

Dchs1 mice and genotyping were previously described22. All mice were blinded for 

genotype. Following phenotypic analyses, the genotypes of each sample were matched with 

the experimentally determined datasets. Histology, mitral valve analyses (echocardiography, 

MRI, and morphometric determination), and expression studies were performed on 

embryonic and adult (9-month male) wild-type (Dchs1+/+), heterozygote (Dchs1+/), and 

knockout (Dchs1−/−) hearts (C57/Bl6;Sv129 mixed background). For Histology: Fetal 

(E17.5) and adult (9-month) hearts were processed for hematoxylin and eosin stainings and 

immunohistochemistry (IHC) as previously described 37. For fetal analyses, Dchs1+/+, 

Dchs1+/−, and Dchs1−/− mice were analyzed.(N=5/genotype) Due to neonatal lethality of the 

Dchs1−/− mice and loss of function Dchs1 mutations in humans, adult analyses were 

restricted to Dchs1+/+ (N=7) and Dchs1+/− (N=5). For all analyses male mice were used. 

Antibodies used for IHC were: Hyaluronan Binding Protein (HABP) to stain proteoglycans 

(1:100) (Callbiochem), collagen I (1:100) (MDbio), and Hoescht to stain nuclei (1:10000) 

(Invitrogen). AMIRA 3D reconstructions were performed to generate volumetric 

measurements of fetal (E17.5) anterior and posterior mitral leaflets (N=5 for each genotype) 

as previously described 38. Length and width measurements of the mitral leaflets were 

obtained from histological sections. 25 consecutive 5 μM sections from anterior and 

posterior mitral leaflets of each genotype were used for measurements (Dchs1+/+, N=4, 

Dchs1+/−, N=7, Dchs1−/−, N=5). ImageJ software was used to measure the length of 

anterior and posterior leaflets from annulus to tip and the perpendicular width at the base, 

mid-region and tip. Measurements were compared to wild-type data to generate fold change 

and statistical significance (p<.01) was calculated using a Students t-test. For quantification 

of mitral valve interstitial cell alignment: hearts were initially dissected from E17.5 fetuses. 

The apex of the heart was dissected and discarded followed by removal of the left atrium. A 

cut was made cranial to caudal along the anterior aspect of the myocardium. The left 
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ventricle was reflected to gain visualization of the leaflets. The left ventricle and 

interventricular septum were pinned such to stretch the papillary muscle and the chords. 

This resulted in obtainment of the leaflet as a planar sheet of tissue. The tissue was fixed in 

this position to ensure the leaflet was maintained in this orientation, as failure to do so 

results in curling of the leaflet making measurements and plane of orientation inconsistent 

between animals. Once the planar leaflet tissue was fixed in 4%PFA for 5 minutes, the 

leaflet was released from the heart by cutting the chords and dissecting along the annulus 

fibrosae. The tissue was then processed through normal protocols and placed en-face on 

paraffin. This technique was performed blinded to genotype and performed in exactly the 

same manner for all valve isolates. Performing this type of dissection and tissue processing 

ensures that all leaflets are placed in nearly identically oriented planes. The vector maps and 

quantification of cell alignment were performed blinded by two independent researchers. 

Only after the data was generated did a third researcher perform the PCR genotyping. Vector 

maps were manually generated as previously described39. Cells that deviated >10 degrees 

from an average alignment plane were counted as misaligned. Interstitial cells within 

anterior leaflets from each genotype were measured. Total number of cells measured were: 

WT=1083, (N=4), Het=1118, (N=4), KO=1953, (N=4). Statistical significance was 

calculated using a Students t-test with a p value <.05 being significant. Very little variation 

existed between the independent valves of each genotype as is graphically depicted. For 

mouse echocardiography the Vevo2100 imaging system (VisualSonics, Toronto, Canada) 

was used with 22–55 MHz linear transducer probe (MS550D) and utilized for 2-D B-mode 

and M-mode analysis. Heart rate was maintained at 400–500 bpm via isoflurane anesthesia. 

The mitral valve leaflet was visualized and its function was assessed in parasternal long-axis 

B-mode view by placing the transducer on the left lateral chest wall. End-systolic and end-

diastolic LV dimensions and wall thicknesses were measured according to the American 

Society of Echocardiography guidelines as applied to mice. LV wall thickness was measured 

at the level of interventricular septum and the posterior wall. LV volume was calculated 

from Simpson’s method of disks and ejection fraction determined from the formula (LV 

end-diastolic-end-systolic volume)/(LV end-diastolic volume). Offline image analyses were 

performed using dedicated VisualSonics Vevo2100 1.2.0 software. Mitral valve prolapse 

was determined based on superior systolic displacement of one or more leaflets above the 

line connecting the annular hinge points in the long-axis view (N=6/genotype). For MRI 

experiments: 9-month old male Dchs1+/+ and Dchs1+/− mice (n=4) were sacrificed and the 

hearts were perfusion fixed and immersed 1:40 (12.5 mmol) Gadolinium (ProHance) in 10% 

formalin overnight before imaging. MRI was undertaken at 7T using a Bruker Biospin 

console (Pavavision 5.1) with a volume transmitter coil and a phased array surface coil. 

Gradient echo FLASH 3D images were collected with TR/TE/=50ms/5.4ms, flip angle=30°, 

NEX=3, matrix=256×256×256 and pixel resolution=55×55×59μm. Images in DICOM 

format were imported into AMIRA 3D reconstruction software and volume quantification 

were performed as described previously 38. Pairwise comparison of littermates were 

performed and statistical significance was determined (Students t-test) with p<.01. All 

mouse experiments were performed under protocols approved by the Institutional Animal 

Care and Use Committee, Medical University of South Carolina. Prior to cardiac resection, 

mice were sacrificed in accordance with the Guide for the Care and Use of Laboratory 

Animals (NIH Publication No. 85-23, revised 1996).
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RNA expression analyses of Dchs1 and Apbb1

Section in situ hybridization was performed as previously described 40 on 4 embryo’s at 

each timepoint to localize Dchs1 expressing cells throughout cardiac development. A Dchs1 

digoxygenin-labeled riboprobe (Roche) was generated against region 9222–10180 of 

accession#: NM_00162943 and used for in situ hybridization at E11.5, E13.5, and E15.5. 

RNA in situ hybridization for Apbb1 at E14.5 was performed through GenePaint 14. Two 

separate riboprobes were used to analyze Apbb1 RNA expression at E14.5. These probes 

were generated against regions 1676–2506 and 370–1967 of accession#: NM_001253885.1. 

These probes span all known isoforms for Apbb1 and provide similar spatial RNA 

expression patterns.

Protein Expression

Dchs1 antibodies were generated by immunizing rabbits with a synthetic peptide 

corresponding to rat Dchs1 protein sequence: CSTYMVESPDLVEADSAA (region 1308–

1324 of accession #: NP_001101014) 36. Immunohistochemistry was performed as 

described previously19 using a 1:100 dilution of primary antibody.

In Vivo Lineage Trace

To trace the fate of epicardially derived cells in Dchs1+/+ and Dchs1+/− mitral leaflets, the 

mWt1/IRES/GFP-Cre mouse25 was bred with the Dchs1+/− and Dchs1+/+ mice (N=4/

genotype). Mice were sacrificed at neonatal day 0 (P0) hearts were isolated and fixed 

overnight at 4°C in 4% paraformaldehyde dissolved in PBS. Hearts were processed through 

a series of graded ethanols, cleared in toluene, and embedded in Paraplast Plus (Fisherbrand, 

23-021-400). Hearts were sectioned at 5 μm and slides were treated with 15mls of antigen 

unmasking solution (Vector Biolabs, H-3300) in 1600mls of distilled water for 10 minutes 

in a pressure cooker (Cuisinart) followed by incubation for 1 hour at room temperature with 

1% BSA (Sigma, B4287) in PBS. Expression of EGFP after Cre recombination was detected 

by immunofluorescence using antibodies against GFP (Abcam, 13970) and Myosin heavy 

chain (MF20; DSHB). 5 μm sections throughout the entire valve were used for 3D 

reconstructions using Amira software. The volume of GFP positive cells and the volume of 

each mitral leaflet were measured using this software. Cell counting was done on GFP 

positive and GFP negative cells every 15 microns throughout the entire valve. Pairwise 

comparison of littermates were performed and statistical significance was determined 

(Students t-test) with p=.04 for posterior leaflet and p=.86 for anterior leaflet.

In Vitro Migration

Human mitral valve interstitial cells were isolated from a control and the patient with the 

DCHS1 mutation (p.R2230C) (proband Family 2) and seeded into the Radius 24-well Cell 

Migration Assay plate containing hydrogels (Cell Biolabs, CBA-125). Cells were allowed to 

adhere overnight and then gels were dissolved. Wells were imaged over a period of 24 hours 

and area of the cell free region was measured in photoshop v.10.0.01 and subtracted from 

the initial area of the hydrogel to generate area migrated over time. Migration in the 

Dchs1+/− and Dchs1+/+ mice was assessed by explanting P0 neonatal posterior mitral 

leaflets onto plastic. Images of the explants and migrating cells were captured at multiple 
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timepoints. Distance migrated was measured as the distance from the explant to the farthest 

migrating cell. Measurements were taken at 5 points around the explant and averaged to 

calculate distance migrated. After 24 hours, cells were fixed in ice-cold 100% methanol for 

10 minutes and immunofluorescence was performed using an antibody against N-cadherin 

(1:1000 dilution, BD Transduction Labs, 610920). Pairwise comparisons were performed 

and statistical significance was determined (Students t-test) with p<.05.

Statistical Consideration

In all experiments sample sizes were chosen to provide power of 0.8 to detect biological 

significant differences between test groups with two-sided α = 0.05. Specific statistical tests 

are listed in the methods for each individual experiment. Assumptions of normal 

distributions were made for quantitative biological measurements and comparison groups 

were assumed to have similar variances. For zebrafish experiments, fertilized oocytes were 

randomly selected within each clutch for injection with active compound vs. controls. 

Mouse experiments were interpreted blinded to genotype.

Extended Data

Extended Data Figure 1. Measurement Of Endogenous And Exogenous Gene Expression In 
Danio Rerio
(A) Corresponding representative embryos of each morpholino knockdown on the left, with 

closeup of heart on the right. (B) To assess efficiency of morpholino knockdown, embryos 

were collected 72 hours after injection, mRNA was collected, and qPCR was performed. We 

demonstrate that morpholino (MO) knockdown of each indicated gene results in reduced 

mRNA expression, after normalization to beta-actin expression, compared to mock-injected 

controls (two-sided Student’s t-test). (C) Western blotting of embryos injected with DCHS1 

mRNA demonstrates the production of protein. Mutant mRNA refers to the compound 

mutant P197L/R2513H. p-values are noted on graphs.
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Extended Data Figure 2. Apbb1 Is Not Expressed During Cardiac Morphogenesis
Apbb1 RNA expression was analyzed at E14.5 in sagittal sections using 2 separate antisense 

probes. Whereas strong cranial and neural expression is observed for Apbb1, no detectable 

cardiac expression or valve expression (arrow) is evident.

Extended Data Figure 3. Dachsous1b Expression At The AV Junction
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In situ hybridization reveals the presence of dchs1b in the AV canal (avc) at 54 hpf (A,B) 

and 72 hpf (C). The dchs1b expression is purple while a counterstain for cardiac tissue is 

brown (panel A). White arrows highlight the dchs1b signal in the AV canal.

Extended Data Figure 4. Dachsous1b knockdown alters AV ring markers
In situ hybridization at 48hpf and 72hpf, as indicated, was performed for known AV ring 

markers. In contrast to wt (A) bmp4 expression is expanded into the ventricle at 48 hpf in 

dchs1 knockdown embryos at 48 hpf (B), spp1 and notch1b expression was largely 

unperturbed (C–F), and has2 expression was not detected at 48 hpf, and is faint at 72 hpf in 

dchs1 knockdown, compared to identically handled and stained controls (I–L).
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Extended Data Figure 5. Histopathology Mitral Valves
Human posterior leaflets of control, Barlow’s with MVP, and DCHS1 p.R2330C were 

isolated, fixed and stained with Movats Pentachrome. Leaflet thickening, elongation and 

myxomatous degeneration is observed in the Barlow’s and DCHS1 p.R2330C leaflets 

compared to controls. Expansion of the proteoglycan layer (blue) and disruption of the 

normal stratification of matrix boundaries is observed in the Barlow’s and DCHS1 

p.R2330C leaflets. Blue=proteoglycan, Yellow=collagen, Black=elastin, Red=fibrin or 

cardiac muscle. Scale bars = 0.5cm
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Extended Data Figure 6. Protein Expression Of Uncoupled Mutations
In order to determine which Family 1 DCHS1 mutation is leading to the observed decrease 

in protein expression, constructs were generated that harbored only the p.P197L or the 

p.R2513H variant. Mutant refers to the double mutant P197L/R2513H construct. Western 

blot analyses from transfected HEK293 cells demonstrate that the p.R2513H mutation 

causes a significant decrease in DCHS1 protein expression, similar to that of the construct 

with both variants (mutant), suggesting pathogenicity. Percent difference in protein levels is 

depicted. Normalization of data was accomplished by qPCR specific to the transfected 

constructs. p-values are denoted in graphs.

Extended Data Figure 7. Cardiac Function Is Not Altered In Dchs1+/− Mice
M-Mode analyses were performed to determine whether cardiac structure and/or function 

were perturbed in the Dchs1+/− mice. No statistically significant differences were observed 

in either cardiac structure or calculated cardiac function (N=6 for each genotype). 

Abbreviations: IVS-interventricular septum, d-diastole, s-systole, LVID-left ventricular 

internal dimension, LVPW-left ventricular posterior wall, EF-ejection fraction, FS-fractional 

shortening, LV-left ventricle
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Extended Data Figure 8. Dchs1 Expression During Cardiac Development
Upper Panel: RNA expression of Dchs1 was analyzed during embryonic gestation (E11.5, 

E13.5, and E15.5) by section in situ hybridization. At E11.5 Dchs1 RNA (blue staining) 

expression is observed in the endocardium and mesenchyme of the superior and inferior 

cushions (sAVC and iAVC, respectively). A gradient pattern of expression is observed at 

this time point with more intense expression near the endocardium. At E13.5 and E15.5, a 

similar pattern is observed in the forming anterior and posterior mitral leaflets (AL and PL, 

respectively). Lower Panel: Dchs1 protein expression (red) is observed throughout cardiac 

development in the endothelial cells and interstitial cells of the developing valves. Dchs1 

shows asymmetric expression in the valvular interstitial cell bodies around E15.5 

(arrowheads). Dchs1 protein is also observed in the epicardium and AV sulcus (arrows). 

(Red-Dchs1, Green-MF20, Blue-Hoescht).
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Extended Data Figure 9. Dchs1 Deficiency Causes Altered Valvular Interstitial Cell Patterning 
In Vivo.
(A) IHC for eGFP of postnatal day 0 (P0) lineage traced Wt1-Cre/Rosa-eGFP/Dchs1+/+ 

neonatal mice show epicardial-derived cells (EPDCs) migrating into the posterior leaflet as a 

sheet of cells directly under the endothelium of the atrialis. This normal patterning is 

perturbed in the Wt1-Cre/Rose-eGFP/Dchs1+/− mice. 3D reconstructions were used to 

examine all EPDCs in the posterior leaflet of both genotypes to obtain a complete fate map 

of these cells. (B, C) Total volume of the leaflet is unchanged at this time point. However, 

the total volume of EPDCs as well as total EPDC cell number is significantly increased. 

There is a significant decrease in the number of non-EPDCs in the posterior leaflet with no 

overall change in total cell number. These data demonstrate that a minimum threshold of 

Dchs1 expression is required for normal migration of EPDCs into the posterior leaflet, 

normal patterning of this cell population, and cross-talk between EPDC and non-EPDC cell 

types in the valve. (**p<.01) (D) Isolated anterior mitral leaflet from fetal (E17.5) Dchs1+/+, 

Dchs1+/−, and Dchs1−/− mice were used to quantify cellular alignment of valvular 

interstitial cells. Vector maps were generated from histological (H&E) stains to show 

orientation and alignment of cells in relationship to each other. Boxes in each vector map 

panel are represented as zoomed images of regions within each of the valves to show cell 

orientation. (E) Cell alignment and polarity were quantified as the number of cells that 

deviate >10 degrees from the proximal-distal (P–D) axis of the leaflet. 90% of the cells in 

Dchs1+/+ show proper alignment with each other and along this P–D axis. 

Haploinsufficiency (Dchs1+/−) results in a 50% reduction in cell alignment, which is further 

reduced in Dchs1−/− (*=p-values<.01).
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Extended Data Figure 10. Mice And MVP Patients With Dchs1 Deficiency Exhibit Migratory 
Defects In Vitro
(A) Posterior Leaflets of P0 neonatal Dchs1+/+ and Dchs1+/− mice were explanted and 

interstitial cells were allowed to migrate out for 24 hours. Dchs1+/− mice exhibit increased 

migration (black lines drawn from explants) coincident with loss of cell-cell contacts and N-

Cadherin expression at focal adhesions. Whereas N-Cadherin expression (red) is found at 

the membrane at points of cell-cell contract in Dchs1+/+ valvular interstitial cells (arrows), 

this membrane expression is lost in the Dchs1+/− cells and is prominently expressed in the 

cytoplasm (arrows). (Nuclei-blue). (B) Migration assays using control and MVP patient 

(p.R2330C) valvular interstitial cells exhibit a similar affect as observed in the mouse cells 

whereby the p.R2330C cells exhibit an increase in migration. p-values are denoted in 

graphs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pedigrees, mutation, and phenotype
Black symbols = MVP affecteds, gray = unknown, Arrows = probands, If no genotype is 

shown, the individuals were unavailable for study. (A). Pedigree linked to chromosome 11. 

#= Individuals under 15 years of age, *- individuals sequenced. Genotypes c. 7538G>A 

(R2513H) of DCHS1 mutation are shown. (B) DNA sequence of c.7538G>A (p.R2513H). 

(C) Two-dimensional echocardiographic long-axis view of Family 1 proband. Dashed line 

marks mitral annulus. (D,E) Family 2 and 3 pedigrees. Genotype c.6988C>T (p.R2330C) 

shown. (F) DNA sequence c. 6988C>T (p.R2330C) (G) Two-dimensional 

echocardiographic long-axis view of Family 2 proband.
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Figure 2. Zebrafish Dchs1b Is Required For AV Canal Development
(A) By 72 hpf, zebrafish hearts develop a constriction in the atrioventricular canal (AVC) 

that separates the atrium (a) from the ventricle (v). (B) Knockdown of dchs1b results in 

absence of the AV constriction (bracket). (C) ~75% of Dchs1b morphants exhibit AVC 

defects (*p= 1×10−62). DCHS1 human mRNA rescues the dchs1b morpholino AVC 

phenotype whereas human mutant DCHS1 mRNA (P197H/R2513H) fails to rescue (**p=.

009). Total number of fish analyzed was 611 and statistical values were obtained using 

Fisher’s Exact test.
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Figure 3. DCHS1 Mutations Result In Diminished Protein Levels
(A–C) Western blot: (p.P197L/p.R2513H) mutant DCHS1 results in a 60% decrease in 

protein with no change in RNA expression. (D) Left Panel: DCHS1 wild-type (WT) or 

mutant (p.P197L/p.R2513H) transfectants treated with cycloheximide for specified times 

followed by Western analyses. Right Panel: Cycloheximide on Control (DCHS1 WT) or 

MVP patient (p.R2330C) MVICs. Tubulin=loading control (E) Graphical depiction of 

calculated protein half-lives. WT and mutant transfectants half-life = 5.8 hours versus 1.6, 

respectively (left graph). Control and mutant DCHS1 half-life is 1.73 hours versus 0.46 

hours, respectively (right graph). Analyses performed in triplicate and repeated four times. 

Error bars = standard deviations; p-values calculated using two-tailed Students t-test.
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Figure 4. Dchs1 Deficiency Causes MVP and Myxomatous Degeneration in the Adult Mouse
Echocardiography (Echo), MRI, Histopathology, and 3D reconstructions performed on 9-

month old male Dchs1+/+ and Dchs1+/− mouse hearts. Echo: posterior leaflet prolapse in 

Dchs1+/− (green arrow) (N=6/genotype). Immunohistochemistry (IHC): Dchs1+/− (N=5) 

anterior, posterior leaflets (AL, PL) exhibit myxomatous degeneration and expansion of 

proteoglycan expression compared to Dchs1+/+ (N=7), collagen (red), proteoglycans 

(green). MRI show posterior leaflet (PL) thickening in Dchs1+/− (arrow-inset) compared to 

control littermates. 3D reconstructions of MRI: Dchs1+/− mice exhibit thickened and 

elongated leaflets compared to Dchs1+/+. (Two-tailed Student t-test was used to calculate p-

values; p=.01, N=4/genotype).
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Figure 5. Developmental Etiology for MVP
(A,B) H&E and 3D reconstructions of E17.5 Dchs1+/+, Dchs1+/−, and Dchs1−/− mouse 

hearts showing thickening of anterior and posterior leaflets (AL, PL) in Dchs1−/− mice 

compared to Dchs1+/+. Dchs1+/− valves display an intermediate phenotype. (C) 

Quantification of valve dimensions showing Dchs1−/− (green bars) and Dchs1+/− (orange 

bars) anterior and posterior lengths were significantly reduced compared to Dchs1+/+ (blue 

bars) leaflets. Dchs1−/− and Dchs1+/− valves displayed increased thickness throughout the 

leaflets compared to Dchs1+/+. Scale Bars= 100μm. N=5/genotype and two-tailed Student’s 

t-test was used to calculate p-values; *p<.01
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