80 research outputs found

    Presence of Actinobacterial and Fungal Communities in Clean and Petroleum Hydrocarbon Contaminated Subsurface Soil

    Get PDF
    Relatively little is known about the microbial communities adapted to soil environments contaminated with aged complex hydrocarbon mixtures, especially in the subsurface soil layers. In this work we studied the microbial communities in two different soil profiles down to the depth of 7 m which originated from a 30-year-old site contaminated with petroleum hydrocarbons (PHCs) and from a clean site next to the contaminated site. The concentration of oxygen in the contaminated soil profile was strongly reduced in soil layers below 1 m depth but not in the clean soil profile. Total microbial biomass and community composition was analyzed by phospholipid fatty acid (PLFA) measurements. The diversity of fungi and actinobacteria was investigated more in detail by construction of rDNA-based clone libraries. The results revealed that there was a significant and diverse microbial community in subsoils at depth below 2 m, also in conditions where oxygen was limiting. The diversity of actinobacteria was different in the two soil profiles; the contaminated soil profile was dominated by Mycobacterium -related sequences whereas sequences from the clean soil samples were related to other, generally uncultured organisms, some of which may represent two new subclasses of actinobacteria. One dominating fungal sequence which matched with the ascomycotes Acremonium sp. and Paecilomyces sp. was identified both in clean and in contaminated soil profiles. Thus, although the relative amounts of fungi and actinobacteria in these microbial communities were highest in the upper soil layers, many representatives from these groups were found in hydrocarbon contaminated subsoils even under oxygen limited conditions

    Degradation rates of aged petroleum hydrocarbons are likely to be mass transfer dependent in the field

    Get PDF
    Evidence for on site biodegradation may be difficult to provide at heterogeneous sites without additional experiments in controlled laboratory conditions. In this study, microbial activities measured as CO2 and CH4 production were compared in situ, in intact soil cores and in bottle microcosms containing sieved soils. In addition, biodegradation rates were determined by measuring the decrease in petroleum hydrocarbon concentrations at 7°C in aerobic and anaerobic conditions. Elevated concentrations of CO2 and CH4 in the soil gas phase indicated that both the aerobic and anaerobic microbial activity potentials were high at the contaminated site. Aerobic and anaerobic microbial degradation rates in laboratory experiments of petroleum hydrocarbons were highest in soils from the most contaminated point and degradation in the aerobic and anaerobic microcosms was linear throughout the incubation, indicating mass-transfer-dependent degradation. Different results for microbial activity measurements were obtained in laboratory studies depending on pretreatment and size of the sample, even when the environmental conditions were mimicked. These differences may be related to differences in the gas exchange rates as well as in changes in the bioavailability of the contaminant in different analyses. When predicting by modeling the behavior of an aged contaminant it is relevant to adapt the models in use to correspond to conditions relevant at the contaminated sites. The variables used in the models should be based on data from the site and on experiments performed using the original aged contaminant without any additions

    Investigating the frequency of triploid Atlantic salmon in wild Norwegian and Russian populations

    Get PDF
    Fish may display variations in ploidy, including three sets of chromosomes, known as triploidy. A recent study revealed a frequency of ~ 2% spontaneous (i.e., non-intentional) triploidy in domesticated Atlantic salmon produced in Norwegian aquaculture in the period 2007–2014. In contrast, the frequency of triploidy in wild salmon populations has not been studied thus far, and in wild populations of other organisms, it has been very rarely studied. In population genetic data sets, individuals that potentially display chromosome abnormalities, such as triploids with three alleles, are typically excluded on the premise that they may reflect polluted or otherwise compromised samples. Here, we critically re-investigated the microsatellite genetic profile of ~ 6000 wild Atlantic salmon sampled from 80 rivers in Norway and Russia, to investigate the frequency of triploid individuals in wild salmon populations for the first time.publishedVersio

    How does tillage intensity affect soil organic carbon? A systematic review protocol

    Get PDF
    Background Soils contain the greatest terrestrial carbon (C) pool on the planet. Since approximately 12% of soil C is held in cultivated soils, management of these agricultural areas has a huge potential to affect global carbon cycling; acting sometimes as a sink but also as a source. Tillage is one of the most important agricultural practices for soil management and has been traditionally undertaken to mechanically prepare soils for seeding and minimize effects of weeds. It has been associated with many negative impacts on soil quality, most notably a reduction in soil organic carbon (SOC), although still a matter of considerable debate, depending on factors such as depth of measurement, soil type, and tillage method. No tillage or reduced intensity tillage are frequently proposed mitigation measures for preservation of SOC and improvement of soil quality, for example for reducing erosion. Whilst several reviews have demonstrated benefits to C conservation of no till agriculture over intensive tillage, the general picture for reduced tillage intensity is unclear. This systematic review proposes to synthesise an extensive body of evidence, previously identified through a systematic map. Methods This systematic review is based on studies concerning tillage collated in a recently completed systematic map on the impact of agricultural management on SOC restricted to the warm temperate climate zone (i.e. boreo-temperate). These 311 studies were identified and selected systematically according to CEE guidelines. An update of the original search will be undertaken to identify newly published academic and grey literature in the time since the original search was performed in September 2013. Studies will be critically appraised for their internal and external validity, followed by full data extraction (meta-data describing study settings and quantitative study results). Where possible, studies will be included in meta-analyses examining the effect of tillage reduction (‘moderate' (i.e. shallow) and no tillage relative to ‘intensive' tillage methods such as mouldboard ploughing, where soil is turned over throughout the soil profile). The implications of the findings will be discussed in terms of policy, practice and research along with a discussion of the nature of the evidence base

    Which agricultural management interventions are most influential on soil organic carbon (using time series data)?

    Get PDF
    Background Loss of soil organic carbon (SOC) from agricultural land is identified as one of the major threats to soils, as it influences both fertility and the production of ecosystem services from agriculture. Losses of SOC across regions are often determined by monitoring in different land use systems. Results from agricultural field experiments can reveal increasing SOC stocks after implementation of specific management practices compared to a control, though in time series experiments the relative rate of change is often negative and implying an overall loss. Long-term agricultural field experiments are indispensable for quantifying absolute changes in SOC stocks under different management regimes. Since SOC responses are seldom linear over time, time series data from these experiments are particularly valuable. Methods This systematic review is based on studies reporting time series data collated in a recently completed systematic map on the topic restricted to the warm temperate climate zone and the snow climate zone. These 53 studies were identified and selected systematically according to CEE guidelines. An update of the original search for studies will be repeated using Web of Science and Google Scholar to include newly published academic and grey literature in the time since the original search was performed in September 2013. Studies will be subject to critical appraisal of the internal and external validity, followed by full data extraction (meta-data describing study settings and quantitative study results). Where possible, studies will be included in a quantitative synthesis using time series meta-analytical approaches. The implications of the meta-analytical findings will be discussed in terms of policy, practice and research along with a discussion of the nature of the evidence base

    Platelet activating factor stimulates arachidonic acid release in differentiated keratinocytes via arachidonyl non-selective phospholipase A2

    Get PDF
    Platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is known to be present in excess in psoriatic skin, but its exact role is uncertain. In the present study we demonstrate for the first time the role of group VI PLA2 in PAF-induced arachidonic acid release in highly differentiated human keratinocytes. The group IVα PLA2 also participates in the release, while secretory PLA2s play a minor role. Two anti-inflammatory synthetic fatty acids, tetradecylthioacetic acid and tetradecylselenoacetic acid, are shown to interfere with signalling events upstream of group IVα PLA2 activation. In summary, our major novel finding is the involvement of the arachidonyl non-selective group VI PLA2 in PAF-induced inflammatory responses

    Economic benefits of methylmercury exposure control in Europe : monetary value of neurotoxicity prevention

    Get PDF
    © 2013 Bellanger et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Due to global mercury pollution and the adverse health effects of prenatal exposure to methylmercury (MeHg), an assessment of the economic benefits of prevented developmental neurotoxicity is necessary for any cost-benefit analysis. Methods: Distributions of hair-Hg concentrations among women of reproductive age were obtained from the DEMOCOPHES project (1,875 subjects in 17 countries) and literature data (6,820 subjects from 8 countries). The exposures were assumed to comply with log-normal distributions. Neurotoxicity effects were estimated from a linear dose-response function with a slope of 0.465 Intelligence Quotient (IQ) point reduction per μg/g increase in the maternal hair-Hg concentration during pregnancy, assuming no deficits below a hair-Hg limit of 0.58 μg/g thought to be safe. A logarithmic IQ response was used in sensitivity analyses. The estimated IQ benefit cost was based on lifetime income, adjusted for purchasing power parity. Results: The hair-mercury concentrations were the highest in Southern Europe and lowest in Eastern Europe. The results suggest that, within the EU, more than 1.8 million children are born every year with MeHg exposures above the limit of 0.58 μg/g, and about 200,000 births exceed a higher limit of 2.5 μg/g proposed by the World Health Organization (WHO). The total annual benefits of exposure prevention within the EU were estimated at more than 600,000 IQ points per year, corresponding to a total economic benefit between €8,000 million and €9,000 million per year. About four-fold higher values were obtained when using the logarithmic response function, while adjustment for productivity resulted in slightly lower total benefits. These calculations do not include the less tangible advantages of protecting brain development against neurotoxicity or any other adverse effects. Conclusions: These estimates document that efforts to combat mercury pollution and to reduce MeHg exposures will have very substantial economic benefits in Europe, mainly in southern countries. Some data may not be entirely representative, some countries were not covered, and anticipated changes in mercury pollution all suggest a need for extended biomonitoring of human MeHg exposure.Exposure data were contributed from the DEMOCOPHES project (LIFE09 ENV/BE/000410) carried out thanks to joint financing of 50% from the European Commission programme LIFE + along with 50% from each participating country (see the national implementation websites accessible via http://www.eu-hbm.info/democophes/project-partners). Special thanks go to the national implementation teams. The COPHES project that provided the operational and scientific framework was funded by the European Community's Seventh Framework Programme - DG Research (Grant Agreement Number 244237). Additional exposure data were supported by the PHIME project (FOOD-CT-2006-016253) and ArcRisk (GA 226534). We are grateful to Yue Gao and colleagues for sharing Flanders exposure data from the Flemish Center of Expertise on Environment and Health, financed and steered by the Ministry of the Flemish Community. National exposure data from the 2006–2007 French national survey on nutrition and health (Etude Nationale Nutrition Santé) were made available by Nadine Fréry, French Institute for Public Health Surveillance. Data from the Norwegian Mother and Child Cohort Study (a validation sample) were kindly provided by Anne Lise Brantsæter, National Institute of Public Health, Oslo. The UK mercury data were obtained from the ALSPAC pregnancy blood analyses carried out at the Centers for Disease Control and Prevention with funding from NOAA (the US National Oceanographic and Atmospheric Administration). The studies in the Faroe Islands were supported by the US National Institutes of Health (ES009797 and ES012199). The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the funding agencies
    corecore